參考文獻 |
[1] C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).
[2] M. Versluis, B. Schmitz, A. von der Heydt, and D. Lohse, How snapping shrimp snap: through cavitating bubbles, Science 289, 2114 (2000).
[3] C. D. Ohl, O. Lindau, and W. Lauterborn, Luminescence from spherically and aspherically closure laser induced bubbles, Phys. Rev. Lett. 80, 393 (1998).
[4] O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, Spectrum of luminescence from laser-created bubbles in water, Phys. Rev. Lett. 86, 4934 (2001).
[5] Y. H. Chen, H. Y. Chu, and L. I, Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap, Phys. Rev. Lett. 96, 034505 (2006).
[6] Y. H. Chen and L. I, Dynamics of impacting a bubble by another pulsed-laser-induced bubble: Jetting, fragmentation, and entanglement, Phys. Rev. E 77, 026304 (2008).
[7] O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, Shock waves from nonspherical cavitation bubbles, Phys. Rev. Fluids 2, 093601 (2017).
[8] G. N. Sankin, F. Yuan, and P. Zhong, Pulsating tandem microbubble for localized and directional single-cell membrane poration, Phys. Rev. Lett. 105, 078101 (2010).
[9] M. S. Plesset and R. B. Chapman, J. Fluid Mech. 47, 283 (1971).
[10] E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, Phys. Fluids 14, 85 (2002).
[11] R. B. Robinson et al., J. Appl. Phys. 89, 8225 (2001).
[12] E. Anon, X. S. Picamal, P. Hersen, N. C. Gauthier, M. P. Sheetz, X. Trepat, and B. Ladoux, Cell crawling mediates collective cell migration to close undamaged epithelial gaps, Proc. Natl. Acad. Sci. U.S.A. 109, 10891 (2012).
[13] O. C. Escartin, J. Ranft, P. Silberzan, and P. Marcq, Border forces and friction control epithelial closure dynamics. Biophys. J. 106, 65 (2014).
[14] A. Ravasio et al., Gap geometry dictates epithelial closure efficiency, Nat. Commun. 6, 7683 (2015).
[15] A. Brugués, E. Anon, V. Conte, J. H. Veldhuis, M. Gupta, J. Colombelli, J. J. Muñoz, G. W. Brodland, B. Ladoux, and X. Trepat, Forces driving epithelial wound healing, Nat. Phys. 10, 683 (2014).
[16] V. Ajeti et al., Wound healing coordinates actin architectures to regulate mechanical work. Nat. Phys. 15, 696 (2019).
[17] K. D. Nnetu, M. Knorr, D. Strehle, M. Zink, and J. A. Käs, Directed persistent motion maintains sheet integrity during multi-cellular spreading and migration, Soft Matter 8, 6913 (2012).
[18] C. C. Liang, A. Y. Park, and J. L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329 (2007).
[19] M. N. M. Walter, K. T. Wright, H. R. Fuller, S. MacNeil, and W. E. B. Johnson, Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays, Exp. Cell Res. 316 1271 (2010).
[20] M. Tamada, T. D. Perez, W. J. Nelson, and M. P. Sheetz, Two distinct modes of myosin assembly and dynamics during epithelial wound closure, J. Cell Biol. 176, 27 (2007).
[21] J. M. Russo, P. Florian, L. Shen, W. V. Graham, M. S. Tretiakova, A. H. Gitter, R. J. Mrsny, and J. R. Turner, Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure, Gastroenterology 128, 987 (2005).
[22] S. Begnaud, T. Chen, D. Delacour, R. M. Mge, and B. Ladoux, Mechanics of epithelial tissues during gap closure, Curr. Opin. Cell Biol. 42, 52 (2016).
[23] R. J. Tetley, M. F. Staddon, D. Heller, A. Hoppe, S. Banerjee, and Y. Mao, Tissue fluidity promotes epithelial wound healing. Nat. Phys. 15, 1195 (2019).
[24] K. J. Sonnemann and W. M. Bement, Wound repair: toward understanding and integration of single-cell and multicellular wound responses, Annu. Rev. Cell Dev. Biol. 27, 237 (2011).
[25] G. S. Monfared, P. Ertl, and M. Rothbauer, An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure. Sci. Rep. 10, 16192 (2020).
[26] P. Martin and S. M. Parkhurst, Parallels between tissue repair and embryo morphogenesis, Development 131, 3021 (2004).
[27] M. T. A. Blanco, J. M. Verboon, R. Liu, J. J. Watts, and S. M. Parkhurst, Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string, J. Cell Sci. 125, 5984 (2012).
[28] A. Jacinto, S. Woolner, and P. Martin, Dynamic analysis of dorsal closure in Drosophila: From genetics to cell biology, Dev. Cell 3, 9 (2002).
[29] W. Wood, A. Jacinto, R. Grose, S. Woolner, J. Gale, C. Wilson, and P. Martin, Wound healing recapitulates morphogenesis in Drosophila embryos, Nat. Cell Biol. 4, 907 (2002).
[30] H. Y. Chen, Y. T. Hsiao, S. C. Liu, T. Hsu, W. Y. Woon, and L. I, Enhancing cancer cell collective motion and speeding up confluent endothelial dynamics through cancer cell invasion and aggregation, Phys. Rev. Lett. 121, 018101 (2018).
[31] D. T. Tambe et al., Collective cell guidance by cooperative intercellular forces, Nat. Mater. 10, 469 (2011).
[32] A. Szabó, K. Varga, E. M´ehes, and A. Czirók, Collective cell streams in epithelial monolayers depend on cell adhesion, New J. Phys. 15, 075006 (2013).
[33] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, Glass-like dynamics of collective cell migration, Proc. Natl. Acad. Sci. U. S. A. 108, 4714 (2011).
[34] D. Bi, J. Lopez, J. Schwarz, and M. L. Manning, A density-independent rigidity transition in biological tissues, Nature Phys. 11, 1074 (2015).
[35] J. Park et al., Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).
[36] S. Garcia, E. Hannezo, J. Elgeti, J. F. Joanny, P. Silberzan, and N. S. Gov, Physics of active jamming during collective cellular motion in a monolayer, Proc. Natl. Acad. Sci. U. S. A. 112, 15314 (2015).
[37] A. Doostmohammadi, J. I. Mullol, J. M. Yeomans and F. Sagués, Active nematics, Nat. Commun., 9, 3246 (2018).
[38] K. Kawaguchi, R. Kageyama, and M. Sano, Topological defects control collective dynamics in neural progenitor cell cultures, Nature 545, 327 (2017).
[39] T. Saw et al., Topological defects in epithelia govern cell death and extrusion. Nature 544, 212 (2017).
[40] G. Duclos, C. Erlenkämper, J. Joanny, and P. Silberzan, Topological defects in confined populations of spindle-shaped cells. Nature Phys. 13, 58 (2017).
[41] G. Duclos, S. Garcia, H. G. Yevick, and P. Silberzan, Perfect nematic order in confined monolayers of spindle-shaped cells, Soft Matter 10, 2346 (2014).
[42] X. Li, R. Balagam, T. F. He, P. P. Lee, O. A. Igoshin, and H. Levine, On the mechanism of long-range orientational order of fibroblasts, Proc. Natl. Acad. Sci. U. S. A 114, 8974 (2017).
[43] G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Salbreux, J. F. Joanny, J. Prost, and P. Silberzan, Spontaneous shear flow in confined cellular nematics, Nature physics, 14, 728 (2018).
[44] P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
[45] A. Labernadie et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion, Nat. Cell Biol. 19, 224 (2017).
[46] J. B. Beltman, A. F. M. Maree, J. N. Lynch, M. J. Miller, and R. J. de Boer, Lymph node topology dictates T cell migration behavior, J. Exp. Med. 204 771 (2007).
[47] G. Karp, Cell and Molecular Biology: Concepts and Experiments 6th ed. (John Wiley & Sons, 2010).
[48] https://www.youtube.com/watch?v=iKsUiyll2BM
[49] https://en.wikipedia.org/wiki/Fibroblast
[50] O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell Sci. 122, 3203 (2009)
[51] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett. 98, 158102 (2007).
[52] H. P. Zhang, A. Beer, E.-L. Florin, and H. L. Swinney, Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. U. S. A. 107, 13626 (2010).
[53] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Löwen, and J. M. Yeomans, Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. U. S. A. 109, 14308 (2012).
[54] C. Chen, S. Liu, X. Q. Shi, H. Chaté, and Y. Wu, Weak synchronization and large-scale collective oscillation in dense bacterial suspensions, Nature 542, 210–214 (2017).
[55] R. D. Leonardo, Controlled collective motions, Nat. Mater. 15, 1057–1058 (2016).
[56] C. W. Io, T. Y. Chen, J. W. Yeh, and S. C. Cai, Experimental investigation of mesoscopic heterogeneous motion of laser-activated self-propelling Janus particles in suspension, Phys. Rev. E. 96, 062601 (2017).
[57] X. S. Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, Mechanical waves during tissue expansion, Nat. Phys. 8, 628 (2012).
[58] S. A. Tawab, S. M. M. Omar, A. A. A. Zeid, and C. Saba, Role of adipose tissue-derived stem cells versus differentiated Schwann-like cells transplantation on the regeneration of crushed sciatic nerve in rats. A
Histological Study, Int. J. Stem Cells Res. Ther. 1, 1 (2018).
[59] L. Germain, A. Jean, F. A. Auger, and D. R. Garrel, Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts, J. Surg. Res. 57, 268 (1994).
[60] B. Aigouy, D. Umetsu, and S. Eaton, Segmentation and quantitative analysis of epithelial tissues, Methods Mol. Biol. 1478, 227 (2016).
[61] R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. C. Bouten, F. N. van de Vosse, M. Unser and N., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy, Stergiopulos, Biomech. Model. Mechanobiol. 11, 461 (2012).
[62] Y. X. Zhang, C. Y. Liu, H. Y. Chen, and L. I, Spontaneous multi-scale void formation and closure in densifying epithelial and fibroblast monolayers from the sub-confluent state, The European Physical Journal E 45 (11), 89 (2022). |