博碩士論文 109222031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.135.220.208
姓名 黃雅婷(Ya-Ting Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 研究在擁擠環境中由多個驅動蛋白拖曳的貨物速度
(Study of cargo velocity hauled by multiple kinesins in a crowded environment)
相關論文
★ 等溫過程中平衡捷徑之實驗研究★ 蜂擁菌群中被動粒子統計特性之實驗研究
★ 布朗粒子的自發性熱機★ Stochastic thermodynamics of colloidal heat engines
★ 長鏈被動粒子浸於主動群泳菌落的結構動力學★ Impact of Individual Variants in Cell Lengths on the Dynamics of Bacterial Swarming
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Kinesin是一種依賴ATP的細胞內馬達,沿著微管長距離運輸貨物。由多個驅動蛋白牽引貨物的運輸距離被發現更遠,但是對於多個驅動蛋白從0.3到3 extmu m/s的貨物速度沒有統一的說法,因為很少有人知道它們如何在團隊合作中工作。為了解決這個問題,我們在擁擠的環境中構建珠子測定法,並使用漲落定理判定驅動蛋白的數量,以研究擁擠效應對多個驅動蛋白拖動的貨物速度的影響。單個驅動蛋白的貨物速度被觀察到被擁擠的背景減慢。隨著驅動蛋白數量的增加,貨物速度增加並達到1 extmu m/s的單個馬達速度,特別是在更擁擠的背景下發生顯著變化。我們的研究結果表明,驅動蛋白協同行走以分擔貨物的負載,因此在擁擠的環境中比單個馬達移動得更快,但貨物速度如何超過1 extmu m/s的問題仍未解決。
摘要(英) Kinesin, an ATP-dependent intracellular motor, transports cargo along the microtubule for a long distance. It was revealed that cargo hauled by multiple kinesins travels farther, but there is no unified statement about cargo velocity with multiple kinesins from 0.3 to 3 extmu m/s because it is rarely known how they work in teamwork. To answer this, we construct the bead assay in a crowded environment and identify the number of kinesins using the fluctuation theorem to investigate the crowding effect on cargo velocity dragged by multiple kinesins. The cargo velocity of a single kinesin is observed to be slowed by the crowded background. As the number of kinesins increases, the cargo velocity increases and reaches the single motor velocity of 1 extmu m/s, particularly dramatically changing in the more crowded background. Our findings show that kinesins walk in collaboration to share the load on cargo and, thus, move faster than a single motor does in the crowded environment, but the question of how cargo velocity might exceed 1 extmu m/s remains unsolved.
關鍵字(中) ★ 驅動蛋白
★ 擁擠環境
★ 貨物速度
★ 漲落理論
★ 負載共享模型
關鍵字(英) ★ Kinesin
★ Crowded environment
★ Cargo velocity
★ Fluctuation theorem
★ Shared-load model
論文目次 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Cell structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Microtubule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Kinesin motor proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Differential interference contrast (DIC) microscopy . . . . . . . . . . . 13
3.2 Optical tweezers (OT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Stiffness calibration . . . . . . . . . . . . . . . . . . . . . . . . 17
Equipartition analysis . . . . . . . . . . . . . . . . . . . . . . . 17
Power spectrum analysis . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Determination of a conversion constant . . . . . . . . . . . . . 19
4. Fluctuation theorem 21
4.1 Fluctuation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Stochastic model of cargo motion hauled by kinesins . . . . . . . . . . 22
4.3 Application to kinesin motion . . . . . . . . . . . . . . . . . . . . . . . 23
5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Sample flow channel preparation . . . . . . . . . . . . . . . . . . . . . 25
5.2 Viscosity measurement of Xanthan gum . . . . . . . . . . . . . . . . . 26
5.3 Behavior of cargo motion hauled by kinesin-1 motor moving on microtubule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Cargo motion hauled by an unknown number of kinesins in complex solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Counting the number of kinesins in transportation . . . . . . . . . . . 32
5.6 Load-sharing by cooperation between multiple kinesins in crowded environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
A.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.1 Cleaning cover slip . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.2 Tubulin protein aliquot . . . . . . . . . . . . . . . . . . . . . . 41
A.1.3 Microtubule (MT) polymerization . . . . . . . . . . . . . . . . 42
A.1.4 DBMT buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Assay buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2.1 Diluted poly-L-lysine solution (PLL) . . . . . . . . . . . . . . . 42
A.2.2 CDB buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2.3 Kinesin motility assay buffer in Xanthan solution (XKAB) . . 43
A.2.4 Kinesin bead assay . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Xanthan gum solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
參考文獻 1. Vale, R, Reese, T & Sheetz, M. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).
2. Brady, S. T., Lasek, R. J. & Allen, R. D. Fast axonal transport in extruded axoplasm from squid giant axon, Fast Axonal Transport in Squid Giant Axon Abstract. Science 218, 1129–1131. issn: 00368075 (1982).
3. Smith, G. A., Gross, S. P. & Enquist, L. W. Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proceedings of the National Academy of Sciences of the United States of America 98, 3466–3470. issn: 00278424 (2001).
4. Schimert, K. I., Budaitis, B. G., Reinemann, D. N., Lang, M. J. & Verhey, K. J. Intracellular cargo transport by single-headed kinesin motors. Proceedings of the National Academy of Sciences of the United States of America 116, 6152–6161. issn: 10916490 (2019).
5. Hendricks, A. G., Epureanu, B. I. & Meyhöfer, E. Collective dynamics of kinesin. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 79, 1–12. issn: 15393755 (2009).
6. Dimaio, F. & Nogales, E. Near-atomic model of microtubule-tau interactions. 1246, 1242–1246 (2018).
7. Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO Journal 21, 4896–4905. issn: 02614189 (2002).
8. Gramlich, M. W. et al. Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects. Nature Publishing Group, 1–12 (2017).
9. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin Moves by an Asymmetric Hand-Over-Hand Mechanism. Science 302, 2130–2134. issn: 00368075 (2003). 48 Bibliography
10. Scharrel, L., Ma, R., Schneider, R., Jülicher, F. & Diez, S. Multimotor transport in a system of active and inactive kinesin-1 motors. Biophysical Journal 107, 365–372. issn: 15420086 (2014).
11. Mandelkow, E. & Mandelkow, E.-M. Kinesin motors and disease. Trends in Cell Biology 12, 585–591 (2002).
12. Chiba, K. et al. Quantitative analysis of APP axonal transport in neurons: Role of JIP1 in enhanced APP anterograde transport. Molecular Biology of the Cell 25, 3569–3580. issn: 19394586 (2014).
13. Theos, A. C. et al. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Molecular Biology of the Cell 16, 5356– 5372 (2005).
14. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390. issn: 00280836 (1997).
15. Konrad J B¨ohm1, Roland Stracke1, P. M. & Unger1, E. Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays
16. Beeg, J. et al. Transport of beads by several kinesin motors. Biophysical Journal 94, 532–541. issn: 00063495 (2008).
17. Xu, J., Shu, Z., King, S. J. & Gross, S. P. Tuning Multiple Motor Travel via Single Motor Velocity. Traffic 13, 1198–205. issn: 1600-0854. http://www.ncbi.nlm.nih.gov/pubmed/22672518 (2012).
18. Lopes, J. et al. Membrane mediated motor kinetics in microtubule gliding assays. Scientific Reports 9, 1–9. issn: 2045-2322 (2019).
19. Toprak, E., Yildiz, A., Hoffman, M. T., Rosenfeld, S. S. & Selvin, P. R. Why kinesin is so processive. Proceedings of the National Academy of Sciences of the United States of America 106, 12717–12722. issn: 00278424 (2009).
20. Cross, R. & Scholey, J. Kinesin: The tail unfolds. Nature Cell Biology 1, E119– E121. issn: 14764679 (1999). Bibliography 49
21. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nature Cell Biology 1, 288–292. issn: 14657392 (1999).
22. Xu, J., King, S. J., Lapierre-Landry, M. & Nemec, B. Interplay between velocity and travel distance of Kinesin-based transport in the presence of tau. Biophysical Journal 105, L23–L25. issn: 00063495. http://dx.doi.org/10.1016/j.bpj. 2013.10.006 (2013).
23. Kinesin-1 and Dynein Are the Primary Motors for Fast Transport of Mitochondria in Drosophila Motor Axons. Molecular Biology of the Cell 16, 5356–5372 (2005).
24. Furuta, K. et al. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proceedings of the National Academy of Sciences 110, 501–506. issn: 0027-8424 (2012).
25. Conway, L., Wood, D., Tüzel, E. & Ross, J. L. Motor transport of self-assembled cargos in crowded environments. Proceedings of the National Academy of Sciences of the United States of America 109, 20814–20819. issn: 00278424 (2012).
26. Grover, R. et al. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity. Proceedings of the National Academy of Sciences of the United States of America 113, E7185–E7193. issn: 10916490 (2016).
27. Kural, C. et al. Cell Biology: Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? Science 308, 1469–1472. issn: 00368075 (2005).
28. Hendricks, A. G., Holzbaur, E. L. & Goldman, Y. E. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proceedings of the National Academy of Sciences of the United States of America 109, 18447–18452. issn: 00278424 (2012).
29. Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P. & Mallik, R. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission 50 Bibliography of endosomes. Proceedings of the National Academy of Sciences of the United States of America 106, 19381–19386. issn: 00278424 (2009).
30. Derr, N. D. et al. Tug-of-War in Motor Protein Ensembles. Science 338, 662– 666. issn: 0036-8075. arXiv: NIHMS150003. http : / / www . sciencemag . org / content/338/6107/662 (2012).
31. Hancock, W. O. Bidirectional cargo transport: Moving beyond tug of war. Nature Reviews Molecular Cell Biology 15, 615–628. issn: 14710080 (2014).
32. Ariga, T., Tateishi, K., Tomishige, M. & Mizuno, D. Noise-Induced Acceleration of Single Molecule Kinesin-1. Physical Review Letters 127, 178101. issn: 0031- 9007. https://doi.org/10.1103/PhysRevLett.127.178101 (2021).
33. Wirtz, D. Particle-tracking microrheology of living cells: Principles and applications. Annual Review of Biophysics 38, 301–326. issn: 1936122X (2009).
34. Gagliano, J., Walb, M., Blaker, B., MacOsko, J. C. & Holzwarth, G. Kinesin velocity increases with the number of motors pulling against viscoelastic drag. European Biophysics Journal 39, 801–813. issn: 01757571 (2010).
35. Nettesheim, G. et al. Macromolecular crowding acts as a physical regulator of intracellular transport. Nature Physics 16, 1144–1151. issn: 17452481. http: //dx.doi.org/10.1038/s41567-020-0957-y (2020).
36. Khataee, H. & Howard, J. Force Generated by Two Kinesin Motors Depends on the Load Direction and Intermolecular Coupling. Physical Review Letters 122, 188101. issn: 10797114 (2019).
37. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784. issn: 00928674 (1994).
38. Visscher, K., Schnltzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189. issn: 00280836 (1999).
39. Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M., Seifert, U. & Ritort, F. Single-molecule measurement of the effective temperature in non-equilibrium steady states. Nature Physics 11, 971–977. issn: 17452481 (2015). Bibliography 51
40. Wang, Q. et al. Erratum: Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins (Proceedings of the National Academy of Sciences of the United States of America (2017) 114 (E8611-E8617) DOI: 10.1073/pnas.1710328114). Proceedings of the National Academy of Sciences of the United States of America 115, E8104. issn: 10916490 (2018).
41. Ariga, T., Tomishige, M. & Mizuno, D. Nonequilibrium Energetics of Molecular Motor Kinesin. Physical Review Letters 121, 218101. issn: 10797114. arXiv: 1704.05302. https://doi.org/10.1103/PhysRevLett.121.218101 (2018).
42. Ariga, T., Tomishige, M. & Mizuno, D. Experimental and theoretical energetics of walking molecular motors under fluctuating environments. Biophysical Reviews 12, 503–510. issn: 18672469 (2020).
43. Hayashi, K., Ueno, H., Iino, R. & Noji, H. Fluctuation Theorem Applied to F_{1}-ATPase. Phys. Rev. Lett. 104, 218103. http://link.aps.org/doi/10. 1103/PhysRevLett.104.218103 (2010).
44. Hayashi, K., Tanigawara, M. & Kishikawa, J.-i. Measurements of the driving forces of bio-motors using the fluctuation theorem. Biophysics 8, 67–72. issn: 1349-2942 (2012).
45. Hayashi, K. et al. Viscosity and drag force involved in organelle transport: investigation of the fluctuation dissipation theorem. European Physical Journal E 36, 1–7. issn: 12928941 (2013).
46. Hayashi, K. Application of the fluctuation theorem to motor proteins: from F1- ATPase to axonal cargo transport by kinesin and dynein. Biophysical Reviews 10, 1311–1321. issn: 18672469 (2018).
47. Hayashi, K., Tsuchizawa, Y., Iwaki, M. & Okada, Y. Application of the fluctuation theorem for noninvasive force measurement in living neuronal axons. Molecular Biology of the Cell 29, 3017–3025. issn: 1059-1524 (2018). 52 Bibliography
48. Hayashi, K., Hasegawa, S., Sagawa, T., Tasaki, S. & Niwa, S. Non-invasive force measurement reveals the number of active kinesins on a synaptic vesicle precursor in axonal transport regulated by ARL-8. Physical Chemistry Chemical Physics 20, 3403–3410. issn: 14639076 (2018).
49. Hasegawa, S., Sagawa, T., Ikeda, K., Okada, Y. & Hayashi, K. Investigation of multiple-dynein transport of melanosomes by non-invasive force measurement using fluctuation unit χ. Scientific Reports 9. issn: 20452322 (2019).
50. Hayashi, K., Miyamoto, M. G. & Niwa, S. Effects of Dynein Inhibitor on the Number of Motor Proteins Transporting Synaptic Cargos. Biophysical Journal 120, 166a. issn: 00063495 (2021).
51. Kim, A. J. & Sharyn, A. 3681.Full, 1–2. papers : / / c33b182f - cf88 - 47e8 - a9c5-ad67b5626483/Paper/p1612 (2000).
52. Knight, A. E., Kapitein, L. C. & Peterman, E. J. Chapter 2–Single Molecule Experiments and the Kinesin Motor Protein Superfamily: Walking Hand in Hand. Single Molecule Biology, 35–60 (2009).
53. Ashkin, A, Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a singlebeam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).
54. Jun, Y., Tripathy, S. K., Narayanareddy, B. R., Mattson-Hoss, M. K. & Gross, S. P. Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare? Biophysical Journal 107, 1474–1484 (2014).
55. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404. https ://link.aps.org/doi/10.1103/PhysRevLett.71.2401 (15 1993).
56. Gallavotti, G. & Cohen, E. G. D. Dynamical Ensembles in Nonequilibrium Statistical Mechanics. Phys. Rev. Lett. 74, 2694–2697. https://link.aps.org/doi/10.1103/PhysRevLett.74.2694 (14 1995).
57. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales. Phys. Rev. Lett. 89, 050601. http:Bibliography53//link.aps.org/doi/10.1103/PhysRevLett.89.050601https://link.aps.org/doi/10.1103/PhysRevLett.89.050601 (2002).
58. Feitosa, K. & Menon, N. Fluidized Granular Medium as an Instance of the Fluctuation Theorem. Phys. Rev. Lett. 92, 164301. https://link.aps.org/doi/10.1103/PhysRevLett.92.164301 (16 2004).
59. Li, Q., King, S. J. & Xu, J. Native kinesin-1 does not bind preferentially to GTPtubulin- rich microtubules in vitro. Cytoskeleton 74, 356–366. issn: 19493592 (2017).
60. Leach, J. et al. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 79, 1–4. issn: 15393755 (2009).
61. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biology 2. http://cellbio.nature.com (2000).
指導教授 田溶根(Yonggun Jun) 審核日期 2022-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明