參考文獻 |
1. Vale, R, Reese, T & Sheetz, M. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).
2. Brady, S. T., Lasek, R. J. & Allen, R. D. Fast axonal transport in extruded axoplasm from squid giant axon, Fast Axonal Transport in Squid Giant Axon Abstract. Science 218, 1129–1131. issn: 00368075 (1982).
3. Smith, G. A., Gross, S. P. & Enquist, L. W. Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proceedings of the National Academy of Sciences of the United States of America 98, 3466–3470. issn: 00278424 (2001).
4. Schimert, K. I., Budaitis, B. G., Reinemann, D. N., Lang, M. J. & Verhey, K. J. Intracellular cargo transport by single-headed kinesin motors. Proceedings of the National Academy of Sciences of the United States of America 116, 6152–6161. issn: 10916490 (2019).
5. Hendricks, A. G., Epureanu, B. I. & Meyhöfer, E. Collective dynamics of kinesin. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 79, 1–12. issn: 15393755 (2009).
6. Dimaio, F. & Nogales, E. Near-atomic model of microtubule-tau interactions. 1246, 1242–1246 (2018).
7. Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO Journal 21, 4896–4905. issn: 02614189 (2002).
8. Gramlich, M. W. et al. Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects. Nature Publishing Group, 1–12 (2017).
9. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin Moves by an Asymmetric Hand-Over-Hand Mechanism. Science 302, 2130–2134. issn: 00368075 (2003). 48 Bibliography
10. Scharrel, L., Ma, R., Schneider, R., Jülicher, F. & Diez, S. Multimotor transport in a system of active and inactive kinesin-1 motors. Biophysical Journal 107, 365–372. issn: 15420086 (2014).
11. Mandelkow, E. & Mandelkow, E.-M. Kinesin motors and disease. Trends in Cell Biology 12, 585–591 (2002).
12. Chiba, K. et al. Quantitative analysis of APP axonal transport in neurons: Role of JIP1 in enhanced APP anterograde transport. Molecular Biology of the Cell 25, 3569–3580. issn: 19394586 (2014).
13. Theos, A. C. et al. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Molecular Biology of the Cell 16, 5356– 5372 (2005).
14. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390. issn: 00280836 (1997).
15. Konrad J B¨ohm1, Roland Stracke1, P. M. & Unger1, E. Motor protein-driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays
16. Beeg, J. et al. Transport of beads by several kinesin motors. Biophysical Journal 94, 532–541. issn: 00063495 (2008).
17. Xu, J., Shu, Z., King, S. J. & Gross, S. P. Tuning Multiple Motor Travel via Single Motor Velocity. Traffic 13, 1198–205. issn: 1600-0854. http://www.ncbi.nlm.nih.gov/pubmed/22672518 (2012).
18. Lopes, J. et al. Membrane mediated motor kinetics in microtubule gliding assays. Scientific Reports 9, 1–9. issn: 2045-2322 (2019).
19. Toprak, E., Yildiz, A., Hoffman, M. T., Rosenfeld, S. S. & Selvin, P. R. Why kinesin is so processive. Proceedings of the National Academy of Sciences of the United States of America 106, 12717–12722. issn: 00278424 (2009).
20. Cross, R. & Scholey, J. Kinesin: The tail unfolds. Nature Cell Biology 1, E119– E121. issn: 14764679 (1999). Bibliography 49
21. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nature Cell Biology 1, 288–292. issn: 14657392 (1999).
22. Xu, J., King, S. J., Lapierre-Landry, M. & Nemec, B. Interplay between velocity and travel distance of Kinesin-based transport in the presence of tau. Biophysical Journal 105, L23–L25. issn: 00063495. http://dx.doi.org/10.1016/j.bpj. 2013.10.006 (2013).
23. Kinesin-1 and Dynein Are the Primary Motors for Fast Transport of Mitochondria in Drosophila Motor Axons. Molecular Biology of the Cell 16, 5356–5372 (2005).
24. Furuta, K. et al. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proceedings of the National Academy of Sciences 110, 501–506. issn: 0027-8424 (2012).
25. Conway, L., Wood, D., Tüzel, E. & Ross, J. L. Motor transport of self-assembled cargos in crowded environments. Proceedings of the National Academy of Sciences of the United States of America 109, 20814–20819. issn: 00278424 (2012).
26. Grover, R. et al. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity. Proceedings of the National Academy of Sciences of the United States of America 113, E7185–E7193. issn: 10916490 (2016).
27. Kural, C. et al. Cell Biology: Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? Science 308, 1469–1472. issn: 00368075 (2005).
28. Hendricks, A. G., Holzbaur, E. L. & Goldman, Y. E. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proceedings of the National Academy of Sciences of the United States of America 109, 18447–18452. issn: 00278424 (2012).
29. Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P. & Mallik, R. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission 50 Bibliography of endosomes. Proceedings of the National Academy of Sciences of the United States of America 106, 19381–19386. issn: 00278424 (2009).
30. Derr, N. D. et al. Tug-of-War in Motor Protein Ensembles. Science 338, 662– 666. issn: 0036-8075. arXiv: NIHMS150003. http : / / www . sciencemag . org / content/338/6107/662 (2012).
31. Hancock, W. O. Bidirectional cargo transport: Moving beyond tug of war. Nature Reviews Molecular Cell Biology 15, 615–628. issn: 14710080 (2014).
32. Ariga, T., Tateishi, K., Tomishige, M. & Mizuno, D. Noise-Induced Acceleration of Single Molecule Kinesin-1. Physical Review Letters 127, 178101. issn: 0031- 9007. https://doi.org/10.1103/PhysRevLett.127.178101 (2021).
33. Wirtz, D. Particle-tracking microrheology of living cells: Principles and applications. Annual Review of Biophysics 38, 301–326. issn: 1936122X (2009).
34. Gagliano, J., Walb, M., Blaker, B., MacOsko, J. C. & Holzwarth, G. Kinesin velocity increases with the number of motors pulling against viscoelastic drag. European Biophysics Journal 39, 801–813. issn: 01757571 (2010).
35. Nettesheim, G. et al. Macromolecular crowding acts as a physical regulator of intracellular transport. Nature Physics 16, 1144–1151. issn: 17452481. http: //dx.doi.org/10.1038/s41567-020-0957-y (2020).
36. Khataee, H. & Howard, J. Force Generated by Two Kinesin Motors Depends on the Load Direction and Intermolecular Coupling. Physical Review Letters 122, 188101. issn: 10797114 (2019).
37. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784. issn: 00928674 (1994).
38. Visscher, K., Schnltzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189. issn: 00280836 (1999).
39. Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M., Seifert, U. & Ritort, F. Single-molecule measurement of the effective temperature in non-equilibrium steady states. Nature Physics 11, 971–977. issn: 17452481 (2015). Bibliography 51
40. Wang, Q. et al. Erratum: Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins (Proceedings of the National Academy of Sciences of the United States of America (2017) 114 (E8611-E8617) DOI: 10.1073/pnas.1710328114). Proceedings of the National Academy of Sciences of the United States of America 115, E8104. issn: 10916490 (2018).
41. Ariga, T., Tomishige, M. & Mizuno, D. Nonequilibrium Energetics of Molecular Motor Kinesin. Physical Review Letters 121, 218101. issn: 10797114. arXiv: 1704.05302. https://doi.org/10.1103/PhysRevLett.121.218101 (2018).
42. Ariga, T., Tomishige, M. & Mizuno, D. Experimental and theoretical energetics of walking molecular motors under fluctuating environments. Biophysical Reviews 12, 503–510. issn: 18672469 (2020).
43. Hayashi, K., Ueno, H., Iino, R. & Noji, H. Fluctuation Theorem Applied to F_{1}-ATPase. Phys. Rev. Lett. 104, 218103. http://link.aps.org/doi/10. 1103/PhysRevLett.104.218103 (2010).
44. Hayashi, K., Tanigawara, M. & Kishikawa, J.-i. Measurements of the driving forces of bio-motors using the fluctuation theorem. Biophysics 8, 67–72. issn: 1349-2942 (2012).
45. Hayashi, K. et al. Viscosity and drag force involved in organelle transport: investigation of the fluctuation dissipation theorem. European Physical Journal E 36, 1–7. issn: 12928941 (2013).
46. Hayashi, K. Application of the fluctuation theorem to motor proteins: from F1- ATPase to axonal cargo transport by kinesin and dynein. Biophysical Reviews 10, 1311–1321. issn: 18672469 (2018).
47. Hayashi, K., Tsuchizawa, Y., Iwaki, M. & Okada, Y. Application of the fluctuation theorem for noninvasive force measurement in living neuronal axons. Molecular Biology of the Cell 29, 3017–3025. issn: 1059-1524 (2018). 52 Bibliography
48. Hayashi, K., Hasegawa, S., Sagawa, T., Tasaki, S. & Niwa, S. Non-invasive force measurement reveals the number of active kinesins on a synaptic vesicle precursor in axonal transport regulated by ARL-8. Physical Chemistry Chemical Physics 20, 3403–3410. issn: 14639076 (2018).
49. Hasegawa, S., Sagawa, T., Ikeda, K., Okada, Y. & Hayashi, K. Investigation of multiple-dynein transport of melanosomes by non-invasive force measurement using fluctuation unit χ. Scientific Reports 9. issn: 20452322 (2019).
50. Hayashi, K., Miyamoto, M. G. & Niwa, S. Effects of Dynein Inhibitor on the Number of Motor Proteins Transporting Synaptic Cargos. Biophysical Journal 120, 166a. issn: 00063495 (2021).
51. Kim, A. J. & Sharyn, A. 3681.Full, 1–2. papers : / / c33b182f - cf88 - 47e8 - a9c5-ad67b5626483/Paper/p1612 (2000).
52. Knight, A. E., Kapitein, L. C. & Peterman, E. J. Chapter 2–Single Molecule Experiments and the Kinesin Motor Protein Superfamily: Walking Hand in Hand. Single Molecule Biology, 35–60 (2009).
53. Ashkin, A, Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a singlebeam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).
54. Jun, Y., Tripathy, S. K., Narayanareddy, B. R., Mattson-Hoss, M. K. & Gross, S. P. Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare? Biophysical Journal 107, 1474–1484 (2014).
55. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404. https ://link.aps.org/doi/10.1103/PhysRevLett.71.2401 (15 1993).
56. Gallavotti, G. & Cohen, E. G. D. Dynamical Ensembles in Nonequilibrium Statistical Mechanics. Phys. Rev. Lett. 74, 2694–2697. https://link.aps.org/doi/10.1103/PhysRevLett.74.2694 (14 1995).
57. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales. Phys. Rev. Lett. 89, 050601. http:Bibliography53//link.aps.org/doi/10.1103/PhysRevLett.89.050601https://link.aps.org/doi/10.1103/PhysRevLett.89.050601 (2002).
58. Feitosa, K. & Menon, N. Fluidized Granular Medium as an Instance of the Fluctuation Theorem. Phys. Rev. Lett. 92, 164301. https://link.aps.org/doi/10.1103/PhysRevLett.92.164301 (16 2004).
59. Li, Q., King, S. J. & Xu, J. Native kinesin-1 does not bind preferentially to GTPtubulin- rich microtubules in vitro. Cytoskeleton 74, 356–366. issn: 19493592 (2017).
60. Leach, J. et al. Comparison of Faxén’s correction for a microsphere translating or rotating near a surface. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 79, 1–4. issn: 15393755 (2009).
61. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biology 2. http://cellbio.nature.com (2000). |