博碩士論文 109223052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:3.147.45.248
姓名 吳其杭(Chi-Hung Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 錨定脂質飽和度對引信響應釋放的胜肽微脂體釋放的影響
(The Effect of Anchoring Lipid Saturation on Triggered Release Liposome)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 錨定脂質 (Anchored lipid) 是一種功能化脂質,可以將生物分子或有機分子固定在脂質雙層膜上,用來增加微脂體功能(例如:將多肽接在微脂體表面上用來導向或引信響應破膜釋放藥物)。然而,錨定脂質雖科學上被試用在微脂體藥物上來耦合生物或有機分子(市面上藥用微脂體主要配方幾乎都是飽和脂肪,因為可提供較高的機械強度),但在其選擇方面仍缺乏足夠的描述。例如錨定脂質有飽和跟不飽和的版本,該如何選擇?本研究使用抗菌胜肽 Magainin 2 並通過硫醇跟馬來酰亞胺 thiol-maleimide Michael addition將多肽與飽和或不飽和錨定脂質連接,以將多肽錨定到微脂體上,形成了胜肽微脂體。我們將阿黴素封裝在胜肽微脂體中,通過觀察阿黴素的釋放比例來推測不同錨定脂質對微脂體上多肽破膜活性影響。我們發現,在使用不飽和錨定脂質(如 18:1 PE MCC)時,藥物的釋放率接近100%,而在使用飽和錨定脂質(如 18:0 PE MCC)時,藥物的釋放率幾乎為零。為了進一步證明是錨定脂質的不飽和度而不是微脂體本身不飽和度的影響,我們在含有飽和錨定脂質的胜肽微脂體中添加了相等濃度非反應性不飽和的脂質(如18:1 DOPC)。我們發現,微脂體仍然不會釋放藥物,這證明了不是不飽和脂質使得微脂體機械強度變弱而導致引信響應微脂體釋放成功,而是Magainin 2多肽耦合至不飽和錨定脂質後,其破膜能力才能發揮作用,這代表應該有其他的原因。通過圓二色光譜 (CD) 分析,我們還發現,含有 Magainin 2-18:1 脂肽的脂質體具有較高比例的 α-螺旋結構,而 Magainin 2-18:0 脂肽則顯示出較低比例的α-螺旋結構。這可能解釋了不同飽和度的脂肽對微脂體釋放的影響不同。為了比較飽和與不飽和的脂質在膜上的作用差異,我們利用巨型單層囊泡 (Giant unilamellar vesicles, GUVs) 來進行視覺上(螢光)觀察是否是由於脂肪飽和度造成微脂體脂肪相分離,或者是多肽耦合錨定脂質後與其他脂質產生相分離(phase separation)而導致多肽有效聚集進而破膜。由於GUVs的平均直徑達到10微米以上,因此只需在囊泡形成過程中摻入適當的螢光團,即可進行觀察膜的情況。觀察結果顯示,飽和錨定脂質摻入微脂體未出現相分離現象,多肽與飽和錨定脂質共價連結也未出現相分離現象。不飽和錨定脂質摻入微脂體也未出現相分離現象,但抗菌胜肽Magainin 2與不飽和錨定脂質共價連結後,會出現脂肪相分離的現象,說明了此系統中脂肪的相分離對錨定的多肽破膜,有極度的重要性。這些結果有助於我們在藥物輸送系統和膜蛋白功能重建系統中選擇適當的錨定脂質。
摘要(英) Anchoring lipids are functionalized lipids that can immobilize biomolecules or organic molecules on lipid membranes. They are used to enhance the functionality of liposomes, such as conjugating peptides to the surface for targeting or triggering drug release. Commercially available liposomal drugs primarily utilize formulations with saturated lipids due to their higher mechanical strength. However, when choosing between saturated and unsaturated versions of anchoring lipids, there is a lack of guidelines. In this study, we used the antimicrobial peptide Magainin 2 to conjugate to saturated or unsaturated anchoring lipids using thiol-maleimide Michael addition chemistry, which allowed us to anchor the peptide to liposomes and form peptidyl liposomes. We encapsulated doxorubicin in the peptidyl liposomes and observed the drug release to estimate the effect of different anchoring lipids on the membrane-disrupting activity. We found that when using unsaturated anchoring lipids, the drug release rate was close to 100%, whereas when using saturated anchoring lipids, the drug release rate was nearly zero. To further demonstrate that the effect is due to the unsaturation of the anchoring lipids rather than the unsaturation of the liposomes themselves, we added an equal concentration of non-reactive unsaturated lipid to the peptide liposomes containing saturated anchoring lipids. We found that the liposomes still did not release the drug, which indicates that it is not the unsaturated lipids weakening the mechanical strength of the liposomes and causing successful triggering of drug release. Instead, it is the membrane-disrupting ability of the synergistic effect of Magainin 2 peptide conjugated to unsaturated anchoring lipids that plays a role. This suggests that there should be more than simple peptide-membrane interaction involved. Through circular dichroism (CD) analysis, we also observed that liposomes containing Magainin 2-18:1 lipopeptide exhibited a higher extent of α-helical structure, while Magainin 2-18:0 lipopeptide showed a lower extent of α-helical structure. This further shows that peptides interact with membrane differently when using anchoring lipid with/without saturation. To compare the differences in the effects of anchoring lipid saturation on the membrane, we used Giant Unilamellar Vesicles (GUVs) for visual (fluorescent) observation to determine whether the lipid phase separation in liposomes is caused by general lipid saturation or the coupling of the peptide to anchoring lipids leading to phase separation and effective peptide aggregation for membrane disruption. Since GUVs have an average diameter of over 10 micrometers, the observation of the membrane′s condition can be conducted by adding appropriate fluorescent probes during the vesicle formation process. The observation results showed that only when Magainin 2 was conjugated to unsaturated anchoring lipids, lipid phase separation occurred. This indicates the crucial importance of lipid phase separation in this system for the membrane-disrupting activity of the anchored peptide. These findings contribute to the selection of appropriate anchoring lipids in drug delivery systems and membrane protein functional reconstruction systems.
關鍵字(中) ★ 微脂體
★ 錨定脂質
★ 巨型單層囊泡
關鍵字(英) ★ liposome
★ Anchoring Lipid
★ GUV
論文目次 目錄
中文摘要 I
Abstract III
目錄 VI
圖目錄 IX
符號說明 XIV
一、 緒論 1
1-1 前言 1
1-2 微脂體 1
1-3 微脂體膜的物理化學 5
1-4 抗菌胜肽 9
1-5 錨定脂質 11
1-6 不同飽和度的錨定脂質對引信多肽微脂體的影響 13
1-7 實驗設計 15
二、 實驗部分 18
2-1微脂體合成、定性與定量 18
2-1-1 錨定脂質的合成 18
2-1-2 微脂體合成實驗步驟 20
2-1-3 巨大單層囊泡合成 21
2-1-4 微脂體磷脂質濃度的定量 22
2-2 胜肽合成、定性與定量 23
2-2-1 胜肽合成 23
2-2-2 螢光胜肽合成 24
2-2-3 高效能液相層析法 26
2-2-4 質譜法 27
2-2-5 以胺基酸定量進行胜肽定量 28
2-3 圓二色光譜 29
2-4 胜肽微脂體 31
2-4-1 胜肽微脂體合成 31
2-4-2 胜肽微脂體藥物釋放分析 31
2-4-3 光誘導的胜肽微脂體釋放 32
2-4-4 胜肽微脂體的冷凍電子顯微鏡成像 32
2-5 利用巨大單層囊泡觀測脂質相分離 33
2-5-1 倒立螢光顯微鏡分析 33
2-5-2 共軛焦顯微成像技術分析 34
三、結果與討論 37
3-1 胜肽微脂體粒徑及界面電位分析 37
3-2 不同飽和度錨定脂肪共價連結胜肽後的圓二色性光譜分析 41
3-3 冷凍電子顯微鏡影像分析 46
3-4 脂質不飽和度對胜肽不同表面取代量誘發微脂體釋放的影響 51
3-5 脂質不飽和度對紫外光誘發胜肽微脂體藥物釋放量分析 53
3-6 脂質不飽和度對螢光標記脂肪和螢光標記胜肽的分布(觀察相分離) 56
四、總結 62
參考資料 64
附錄 67
附錄一、含不同飽和度錨定脂質微脂體的包覆藥物分析 67
附錄二、標記螢光的破膜活性多肽之破膜活性 68
附錄三、微脂體之共軛焦顯微鏡圖像 69
附錄四、錨定脂質PE MAL的探討 71
參考文獻 1. Bangham, A. D.; Horne, R., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology 1964, 8 (5), 660-IN10.
2. Horne, R.; Bangham, A.; Whittaker, V., Negatively stained lipoprotein membranes. Nature 1963, 200 (4913), 1340-1340.
3. Sessa, G.; Weissmann, G., Incorporation of lysozyme into liposomes: a model for structure-linked latency. Journal of Biological Chemistry 1970, 245 (13), 3295-3301.
4. Salimi, A., Liposomes as a novel drug delivery system: fundamental and pharmaceutical application. Asian Journal of Pharmaceutics (AJP) 2018, 12 (01).
5. Jones, M. N., The surface properties of phospholipid liposome systems and their characterisation. Advances in Colloid and Interface Science 1995, 54, 93-128.
6. Smith, M. C.; Crist, R. M.; Clogston, J. D.; McNeil, S. E., Zeta potential: a case study of cationic, anionic, and neutral liposomes. Analytical and Bioanalytical Chemistry 2017, 409, 5779-5787.
7. Grüll, H.; Langereis, S., Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. Journal of Controlled Release 2012, 161 (2), 317-327.
8. Dos Santos, N.; Allen, C.; Doppen, A.-M.; Anantha, M.; Cox, K. A.; Gallagher, R. C.; Karlsson, G.; Edwards, K.; Kenner, G.; Samuels, L., Influence of poly (ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochimica et Biophysica Acta (BBA)-Biomembranes 2007, 1768 (6), 1367-1377.
9. Papahadjopoulos, D.; Nir, S.; Ohki, S., Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochimica et Biophysica Acta (BBA)-Biomembranes 1972, 266 (3), 561-583.
10. Chakraborty, S.; Doktorova, M.; Molugu, T. R.; Heberle, F. A.; Scott, H. L.; Dzikovski, B.; Nagao, M.; Stingaciu, L.-R.; Standaert, R. F.; Barrera, F. N., How cholesterol stiffens unsaturated lipid membranes. Proceedings of the National Academy of Sciences 2020, 117 (36), 21896-21905.
11. Utterström, J.; Barriga, H. M.; Holme, M. N.; Selegård, R.; Stevens, M. M.; Aili, D., Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles. Bioconjugate Chemistry 2022, 33 (4), 736-746.
12. Mayer, L.; Bally, M.; Cullis, P., Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1986, 857 (1), 123-126.
13. Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y., Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochimica et Biophysica Acta (BBA)-Biomembranes 1993, 1151 (2), 201-215.
14. Yamazaki, M., The single GUV method to reveal elementary processes of leakage of internal contents from liposomes induced by antimicrobial substances. Advances in Planar Lipid Bilayers and Liposomes 2008, 7, 121-142.
15. Luisi, P. L.; Walde, P., Giant vesicles. John Wiley & Sons: 2008.
16. Monteiro, N.; Martins, A.; Reis, R. L.; Neves, N. M., Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface 2014, 11 (101), 20140459.
17. Murphy, W. L.; Messersmith, P. B., Compartmental control of mineral formation: adaptation of a biomineralization strategy for biomedical use. Polyhedron 2000, 19 (3), 357-363.
18. Maurer, N.; Fenske, D. B.; Cullis, P. R., Developments in liposomal drug delivery systems. Expert Opinion on Biological Therapy 2001, 1 (6), 923-947.
19. Collier, J. H.; Messersmith, P. B., Phospholipid strategies in biomineralization and biomaterials research. Annual Review of Materials Research 2001, 31 (1), 237-263.
20. Papahadjopoulos, D.; Jacobson, K.; Nir, S.; Isac, I., Phase transitions in phospholipid vesicles fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes 1973, 311 (3), 330-348.
21. Bitounis, D.; Fanciullino, R.; Iliadis, A.; Ciccolini, J., Optimizing druggability through liposomal formulations: new approaches to an old concept. International Scholarly Research Notices 2012, 2012.
22. Veatch, S. L.; Keller, S. L., Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophysical journal 2003, 85 (5), 3074-3083.
23. Yeaman, M. R.; Yount, N. Y., Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews 2003, 55 (1), 27-55.
24. Oren, Z.; Shai, Y., Mode of action of linear amphipathic α‐helical antimicrobial peptides. Peptide Science 1998, 47 (6), 451-463.
25. Huan, Y.; Kong, Q.; Mou, H.; Yi, H., Antimicrobial peptides: classification, design, application and research progress in multiple fields. Frontiers in Microbiology 2020, 2559.
26. Hara, T.; Kodama, H.; Kondo, M.; Wakamatsu, K.; Takeda, A.; Tachi, T.; Matsuzaki, K., Effects of peptide dimerization on pore formation: Antiparallel disulfide‐dimerized magainin 2 analogue. Biopolymers: Original Research on Biomolecules 2001, 58 (4), 437-446.
27. Uematsu, N.; Matsuzaki, K., Polar angle as a determinant of amphipathic α-helix-lipid interactions: a model peptide study. Biophysical Journal 2000, 79 (4), 2075-2083.
28. Houseman, B. T.; Gawalt, E. S.; Mrksich, M., Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 2003, 19 (5), 1522-1531.
29. Niño-Ramírez, V. A.; Insuasty-Cepeda, D. S.; Rivera-Monroy, Z. J.; Maldonado, M., Evidence of Isomerization in the Michael-Type Thiol-Maleimide Addition: Click Reaction between L-Cysteine and 6-Maleimidehexanoic Acid. Molecules 2022, 27 (16), 5064.
30. Li, M.; Wang, S.; Xu, J.; Xu, S.; Liu, H., pH/Redox-controlled interaction between lipid membranes and peptide derivatives with a “Helmet”. The Journal of Physical Chemistry B 2019, 123 (31), 6784-6791.
31. Mizukami, S.; Kashibe, M.; Matsumoto, K.; Hori, Y.; Kikuchi, K., Enzyme-triggered compound release using functionalized antimicrobial peptide derivatives. Chemical Science 2017, 8 (4), 3047-3053.
32. Marqués-Gallego, P.; de Kroon, A. I., Ligation strategies for targeting liposomal nanocarriers. BioMed Research International 2014, 2014.
33. Simons, K.; Vaz, W. L., Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 269-295.
34. Wei, Y.; Thyparambil, A. A.; Latour, R. A., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2014, 1844 (12), 2331-2337.
35. Zhao, J.; Wu, J.; Heberle, F. A.; Mills, T. T.; Klawitter, P.; Huang, G.; Costanza, G.; Feigenson, G. W., Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes 2007, 1768 (11), 2764-2776.
指導教授 李賢明 謝發坤(Hsien-Ming Lee Fa-Kuen Shieh) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明