博碩士論文 109223055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.142.135.127
姓名 林其鋒(Chi-Feng Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 延遲退火對大氣下一步驟無反溶劑法製備之鈣 鈦礦膜的影響
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-3-31以後開放)
摘要(中) 一般式鈦礦太陽能電池(Perovskite solar cells,簡稱PSCs)當中的鈣鈦礦膜在製備時常使用非揮發性溶劑(如:DMF和DMSO)溶解鈣鈦礦前驅物,這些非揮發性溶劑需要透過反溶劑以及高溫退火等方式移除,並且製膜需在手套箱中進行,此複雜且高成本的處理方式使得PSC在商品化過程中受到限制。本研究在大氣下,以揮發性液體做為可快速蒸發的溶劑,使鈣鈦礦快速結晶而不需使用反溶劑,並讓鈣鈦礦膜的製備可在大氣下操作,不受到水氣及氧氣的影響製備出高品質的鈣鈦礦膜。為了提高元件的效率,以本實驗室自行合成之分子BT-IDT做為鈣鈦礦與電洞傳遞層之間的界面修飾,期望以BT-IDT上的CN-基團以及噻吩上的S原子之孤對電子,與鈣鈦礦層中未配位飽和的Pb2+作用,以達到鈍化鈣鈦礦的效果,然而隨著實驗的進行發現元件效率的提高並不是因為BT-IDT分子的界面修飾,而是透過延遲退火提供鈣鈦礦膜足夠的時間晶粒生長。SEM圖顯示延遲退火的鈣鈦礦膜平整緻密,以其為吸收層所組裝之元件光電轉化效率可達22.8%,比直接退火的鈣鈦礦膜所組裝之元件的20.7%增加了約10%。從XRD圖可以看到不管是直接退火或是延遲退火製備的鈣鈦礦膜都沒有PbI2的繞射峰,而有延遲退火的鈣鈦礦膜其 (110) 面的繞射峰強度比直接退火的鈣鈦礦膜強,表示鈣鈦礦膜的結晶度更好,延遲退火30分鐘所製備的鈣鈦礦膜的結晶區塊為23.4 nm,比直接退火所製備的鈣鈦礦膜的結晶區塊(為22.0 nm)大,體現在所組裝之元件的FF值 (從原本的73%增加至78%)。延遲退火的鈣鈦礦膜有較強的PL強度以及更長的激子半生期,這些數據都顯示延遲退火所製備的鈣鈦礦膜的品質較好,載子在膜上傳遞時能量損失較少,增加所組裝之元件的Voc值(從1.13 V增加至1.16 V),因此整體元件效率增加10%。
摘要(英) Perovskite film in perovskite solar cells (PSCs) is generally prepared by spin-coating from its precursor solution using non-volatile solvents (such as Dimethylformamide or Dimethyl sulfoxide) to dissolve the perovskite precursor salts. These non-volatile solvents need to be removed by anti-solvent and high-temperature annealing, which need to be carried out in a glove box. This complex and high-cost processing method could be a problem for industrial development. In this study, quick crystallization of perovskite films was achieved by using volatile solvents without using an anti-solvent under ambient environment without affecting by moisture and oxygen. Therefore, high-quality perovskite films were prepared. In order to improve the efficiency of the device, BT-IDT, a molecule synthesized in our laboratory, was used as the interface (between the perovskite and the hole transport layer (HTL)) modification agent. The CN-group in BT-IDT and the lone pair electrons on S atoms of thiophene could interact with the coordination unsaturated Pb2+ in the perovskite film to achieve the passivation. However, later studies found that the improved efficiency of the device is not due to the interphase modification by BT-IDT but due to the delayed annealing of the wet film to provide sufficient time for grain growth. SEM images show a flatter and denser perovskite film. The PSCs based on perovskite film prepared by using volatile solvent and delay annealing exhibit the highest power conversion efficiency (PCE) of 22.8%, which is higher than 20.7% of cells assembled by using directly annealing perovskite film as an absorber. XRD patterns show that both perovskite films prepared by direct annealing and delayed annealing have no PbI2 diffraction peak but the (110) direction intensity of perovskite films prepared by delayed annealing is stronger than the prepared by direct annealing. The domain size of the perovskite films prepared by 30 minutes delayed annealing is 23.4 nm which is larger than that (22.0 nm) of the perovskite films prepared by direct annealing, which reflected in the FF value of the corresponding device (increased from 73% to 78%). The delayed annealed perovskite film has a stronger photoluminescence intensity and a longer exciton half-life than the film prepared by direct annealing, which indicates that the quality of the former perovskite film is better. Therefore, the Voc value of PSCs increases to 1.16 V due to the carriers travel through perovskite film with less energy loss. Overall the PSCs achieved the highest PCE of 22.8%.
關鍵字(中) ★ 鈣鈦礦太陽能電池 關鍵字(英) ★ Perovskite solar cell
論文目次 摘要 vii
Abstract ix
Graphical Abstract xi
謝誌 xii
目錄 xiii
圖目錄 xx
表目錄 xxviii
第一章、 緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池 3
1-2-1. 鈣鈦礦太陽能電池的架構 3
1-2-2. 一般式鈣鈦礦太陽能電池的工作原理 4
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 5
1-3、 電子傳遞層的製備方法 7
1-3-1. 高溫製備的SnO2膜 7
1-3-2. 高溫及低溫製備SnO2膜 9
1-3-3. 以sol-gel法或奈米懸浮液製備SnO2膜 10
1-4、 鈣鈦礦活性層在大氣下的製備方法 12
1-4-1. 大氣下一步驟反溶劑法製備鈣鈦礦活性層 13
1-4-2. 大氣下兩步驟合成法製備鈣鈦礦活性層 14
1-4-3. 在大氣下一步驟無反溶劑法製備鈣鈦礦活性層 16
1-5、 以揮發性溶劑作為鈣鈦礦起始溶液 18
1-5-1. 使用揮發溶劑在大氣下製備FAPbI3鈣鈦礦膜組裝之元件的最高光電轉換效率 20
1-5-2. 使用ACN/MA系統製備MAPbI3鈣鈦礦膜組裝之元件的最高光電轉換效率 22
1-6、 MA氣體能幫助MAPbI3溶解在ACN中的原因 24
1-7、 以2-ME做為FAPbI3前驅溶液之溶劑一步驟無反溶劑法製備成膜… 27
1-8、 以2-ME做為MAPbI3前驅溶液之溶劑一步驟無反溶劑法製備成膜 29
1-9、 添加MABr至鈣鈦礦組成中增加所組裝之元件的Voc及FF值…… 33
1-10、 以噻吩修飾Psk與HTL之間的界面 35
1-11、 透過延遲退火來控制鈣鈦礦膜的成核和相變 37
1-12、 研究動機 40
謝誌 實驗部分 42
2-1、 實驗藥品及儀器設備 42
2-1-1. 藥品 42
2-1-2. 儀器設備 44
2-2、 一般式鈣鈦礦太陽能電池之電池組裝步驟 45
2-2-1. 藥品配製 45
2-2-2. 元件組裝步驟 49
2-3、 儀器原理、樣品製備及量測 53
2-3-1. 熱蒸鍍系統(Thermal evaporation system,高敦科技) 53
2-3-2. 太陽光模擬器及光電轉換效率量測 (Solar Simulator, DENSO KXL-500F及Keithley 2400) 54
2-3-3. 太陽能電池外部量子效率量測系統 (Incident Photon to Current Converion Efficiency (IPCE),QE-S3011) 55
2-3-4. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 56
2-3-5. 紫外光/可見光/近紅外光光譜儀(Ultraviolet-visible-NIR spectroscopy, HITACHI U-4100) 57
2-3-6. 光激發螢光光譜及時間解析光譜 (Photoluminescence (PL) Spectra and Time-Resolved Photoluminescence (TRPL),Uni think Uni-RAM) 58
2-3-7. 紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific Sigma Probe) 59
2-3-8. 超高解析場發射掃描式電子顯微鏡 (Ultra-High Resolution FE-SEM,Nova NanoSEM-230) 60
2-3-9. 接觸角量測儀(Contact angle, Grandhand Ctag01) 61
2-3-10. 空間電荷限制電流量測 (Space Charge Limited Current,簡稱SCLC) 62
第三章、 結果與討論 64
3-1、 大氣下以揮發性溶劑製備鈣鈦礦膜所組裝之一般式元件的條件優化 64
3-1-1. 電子傳遞層篩選 64
3-1-2. 鈣鈦礦起始溶液的濃度篩選 66
3-1-3. 鈣鈦礦起始溶液旋轉塗佈之轉速篩選 67
3-1-4. 鈣鈦礦起始溶液的組成篩選 69
3-2、 以本實驗室自行合成之高分子做為電洞傳遞層 72
3-2-1. 以噻吩衍生物做為鈣鈦礦層與P15之間的界面修飾層來提高元件的光電轉換效率 73
3-2-2. P15溶液旋轉塗佈篩選 75
3-2-3. 以PBT-IDT及PBT-F-IDT做為HTL 76
3-2-4. 篩選配置PBT-IDT的溶劑 78
3-2-5. 篩選配置PBT-IDT溶液的濃度 80
3-3、 以BT-IDT小分子作為鈣鈦礦層與Spiro-OMeTAD HTL之間的界面修飾層研究 82
3-3-1. 篩選界面修飾材料BT-IDT(CB)溶液的濃度 83
3-3-2. 確認BT-IDT界面修飾層的功能 84
3-4、 篩選大氣下以揮發性溶劑製備鈣鈦礦膜的後處理方式 89
3-4-1. 旋轉塗佈之鈣鈦礦膜的第一次退火溫度篩選 90
3-4-2. 篩選鈣鈦礦膜在大氣下最佳的靜置時間 92
3-4-3. 篩選鈣鈦礦膜最佳的延遲退火溫度 94
3-4-4. 篩選鈣鈦礦膜延遲退火的最佳退火時間 95
3-4-5. 以不同鈣鈦礦起始物配置成鈣鈦礦前驅溶液 97
3-4-6. 鈣鈦礦膜靜置在不同環境下延遲退火的影響 99
3-5、 不同延遲時間退火的鈣鈦礦膜之XRD測試 101
3-6、 直接退火及不同時間延遲退火之鈣鈦礦膜的水接觸角 102
3-7、 有無延遲退火鈣鈦礦膜沉積在SnO2膜上的SEM表面形貌和剖面圖 103
3-8、 以不同鈣鈦礦起始物配置成鈣鈦礦前驅溶液沉積在SnO2膜上的SEM表面形貌 105
3-9、 不同環境下延遲退火30分鐘鈣鈦礦膜沉積在SnO2膜上的SEM表面形貌 106
3-10、 鈣鈦礦膜有無延遲退火對所組裝元件之長時間穩定性的影響…….. 107
3-11、 鈣鈦礦膜有無延遲退火對所組裝元件之IPCE 110
3-12、 直接退火及不同時間延遲退火之鈣鈦礦膜的UV-Vis吸收光譜….. 113
3-13、 直接退火及不同時間延遲退火之鈣鈦礦膜的前置軌域能階……….. 114
3-14、 有無延遲退火之鈣鈦礦膜的PL及TRPL圖 116
3-15、 有無延遲鈣鈦礦膜的電洞遷移率、電子遷移率及缺陷密度……….. 122
3-16、 有無延遲退火之鈣鈦礦膜對所組裝之一般式元件的穩態電流密度及效率輸出的影響 126
3-17、 有無延遲退火之鈣鈦礦膜做為吸收層所組裝之一般式元件的暗電流 127
結論 129
第四章、 參考文獻 131

參考文獻 【1】 Best Research-Cell Efficiency Chart (nrel.gov) (2022/06/17).
【2】 https://www.led-professional.com/resources-1/articles/lead-halide perovskite-nanocrystals-a-new-promise-for-light-emitting-devices.
【3】 Zhen Li, Bo Li, Xin Wu, Stephanie A. Sheppard, Shoufeng Zhang, Danpeng Gao, Nicholas J. Long, Zonglong Zhu, “Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells”, Science, 2022, 376, 416-420.
【4】 Wenshing Sun, Chuenlin Tien, Chihhsuan Tsuei, Juiwen Pan “Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination”, APPLIED OPTICS, 2014, 53, 186-194.
【5】 Qingshun Dong, Yantao Shi, Kai Wang, Yu Li, Shufeng Wang, Hong Zhang, Yujin Xing, Yi Du, Xiaogong Bai, Tingli Ma, “Insight into Perovskite Solar Cells Based on SnO2 Compact Electron Selective Layer”, J. Phys. Chem. C., 2015, 119, 10212-10217.
【6】 Weijun Ke, Dewei Zhao, Alexander J. Cimaroli, Corey R. Grice, Pingli Qin, Qin Liu, Liangbin Xiong, Yanfa Yan, Guojia Fang, “Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells”, J. Mater. Chem. A, 2015, 3, 24163-24168.
【7】 Haimang Yi, Dian Wang, Md Arafat Mahmud, Faiazul Haque, Mushfika Baishakhi Upama, Cheng Xu, Leiping Duan, Ashraf Uddin, “Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells”, ACS Appl. Energy Mater., 2018, 1, 6027-6039.
【8】 Euihyuk Jung, Bin Chen, Koen Bertens, Maral Vafaie, Sam Teale, Andrew Proppe, Yi Hou, Tong Zhu, Chao Zheng, Edward H. Sargent, “Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells”, ACS Energy Lett., 2020, 5, 2796-2801.
【9】 Feng Wang, Zongbiao Ye, Hojjatollah Sarvari, So Min Park, Ashkan Abtahi, Kenneth Graham, Yuetao Zhao, Yafei Wang, Zhi David Chen, Shibin Li, “Humidity-insensitive fabrication of efficient perovskite solar cells in ambient air”, Journal of Power Sources, 2019, 412, 359-365.
【10】 Yuanhang Cheng, Xiuwen Xu, Yuemin Xie, Howa Li, Jian Qing, Chunqing Ma, Chunsing Lee, Franky So, Saiwing Tsang, “18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH”, Sol. RRL, 2017, 1, 1700097-1700105.
【11】 Nakita K. Noel, Severin N. Habisreutinger, Bernard Wenger, Matthew T. Klug, Maximilian T. Ho¨rantner, Michael B. Johnston, Robin J. Nicholas, David T. Moore, Henry J. Snaith, “A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films”, Energy Environ. Sci, 2017, 10, 145-152
【12】 Zhongmin Zhou, Zaiwei Wang, Yuanyuan Zhou, Shuping Pang, Dong Wang, Hongxia Xu, Zhihong Liu, Nitin P. Padture, Guanglei Cui, “Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells”, Angew. Chem., Int. Ed., 2015, 54, 9705-9709.
【13】 Lingfeng Chao, Yingdong Xia, Bixin Li, Guichuan Xing, Yonghua Chen, Wei Huang, “Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air”, Chem, 2019, 5, 1–12.
【14】 Congcong Wu, Kai Wang, Jing Li, Zihui Liang, Jin Li, Wenlu Li, Li Zhao, Bo Chi, Shimin Wang, “Volatile solution: the way toward scalable fabrication of perovskite solar cells?”, Matter, 2021, 4, 775–793.
【15】 Christopher B. Whitehead, Saim Özkar, Richard G. Finke, “LaMer’s 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model’s Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data”, Chem. Mater., 2019, 31, 7116–7132.
【16】 Hyunsung Yun, Hyoungwoo Kwon, Minjae Paik, Sungtak Hong, Jaehui Kim, Eunseo Noh, Jaewang Park, Yonghui Lee, Sang Il Seok, “Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers” Nature Energy, 2022, 7, 828-834.
【17】 Kai Wang, Congcong Wu, Yuchen Hou, Dong Yang, Tao Ye, Jungjin Yoon, Mohan Sanghadasa, Shashank Priya, “Isothermally Crystallize Perovskites at Room-Temperature” Energy Environ. Sci., 2020, 13, 3412-3422.
【18】 Xiaofeng Huang, Ruihao Chen, Guocheng Deng, Faming Han, Pengpeng Ruan, Fangwen Cheng, Jun Yin, Binghui Wu, Nanfeng Zheng, “Methylamine-Dimer-Induced Phase Transition toward MAPbI3 Films and High-Efficiency Perovskite Solar Modules” J. Am. Chem. Soc., 2020, 142, 6149-6157.
【19】 Qiqi Zhang, Guorong Ma, Kevin A. Green, Kristine Gollinger, Jaiden Moore, Teresa Demeritte, Paresh Chandra Ray, Glake Alton Hill Jr, Xiaodan Gu, Sarah E. Morgan, Manliang Feng, Santanu Banerjee, Qilin Dai, “FAPbI3 Perovskite Films Prepared by Solvent Self-Volatilization for Photovoltaic Applications” ACS Appl. Energy Mater., 2022, 5, 1487-1495.
【20】 Sunghun Lee, Seungyeon Hong, Hyojung Kim, “Selection of a Suitable Solvent Additive for 2-Methoxyethanol-Based Antisolvent-Free Perovskite Film Fabrication” ACS Appl. Mater. Interfaces, 2022, 14, 39132-39140.
【21】 Weidong Zhu, Chunxiong Bao, Faming Li, Tao Yu, Hao Gao, Yong Yi, Jie Yang, Gao Fu, Xiaoxin Zhou, Zhigang Zou, “A halide exchange engineering for CH3NH3PbI3-xBrx perovskite solar cells with high performance and stability”, Nano Energy, 2016, 19, 17–26.
【22】 Tianyu Wen, Shuang Yang, Pengfei Liu, Lijuan Tang, Hongwei Qiao, Xiao Chen, Xiaohua Yang, Yu Hou, Huagui Yang, “Surface Electronic Modification of Perovskite Thin Film with Water-Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics”, Adv. Energy Mater. 2018, 8, 1703143-1703150.
【23】 Hui Liu, Hairui Liu, Jien Yang, Feng Yang, Zhiyong Liu, Sagar M. Jain, “Improving the Performance of Planar Perovskite Solar Cells through a Preheated, Delayed Annealing Process To Control Nucleation and Phase Transition of Perovskite Films” Cryts. Growth Des., 2019, 19, 4314-4323.
【24】 Bo Sun, Weiwei Wang, Hui Lu, Lingfeng Chao, Hao Gu, Lei Tao, Jianfei Hu, Bixin Li, Xinrong Zong, Wei Shi, Xueqin Ran, Hui Zhang, Yingdong Xia, Ping Li, Yonghua Chen, “Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells.” J. Phys. Chem. C., 2021, 125, 12, 6555–6563.
【25】 Zhen Wang, Junjun Jin, Yapeng Zheng, Xiang Zhang, Zhenkun Zhu, Yuan Zhou, Xiaxia Cui, Jinhua Li, Minghui Shang, Xingzhong Zhao, Sheng Liu, Qidong Tai, “Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Non-Halide Engineering.” Adv. Energy Mater., 2021, 11, 2102169.
【26】 Byungho Lee, Taehyun Hwang, Sangheon Lee, Byungha shin, Byungwoo park, “Microstructural Evolution of Hybrid Perovskites Promoted by Chlorine and its Impact on the Performanc e of Solar Cell”, Scientific Reports., 2019, 9, 4803-4810.
【27】 Juifen Chang, Baoquan Sun, Dag W. Breiby, Martin M. Nielsen, Theis I. So¨lling, Mark Giles, Iain McCulloch, Henning Sirringhaus, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents”, Chem. Mater., 2004, 16, 4772-4776.
【28】 Dong Yang, Ruixia Yang, Xiaodong Ren, Xuejie Zhu, Zhou Yang, Can Li, Shengzhong Liu, “Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport”, Adv. Mater., 2016, 28, 5206-5213.
【29】 Zhihai Liu, Lei Wang, Jiqu Han, Fanming Zeng, Guanchen Liu , Xiaoyin Xie, “Improving the performance of lead-acetate-based perovskite solar cells using solvent controlled crystallization process”, Organic Electronics, 2020, 78, 105552-105557.
【30】 Eugen Zimmermann, Philipp Ehrenreich, Thomas Pfadler, James A. Dorman, Jonas Weickert, Lukas Schmidt-Mende, “Erroneous efficiency reports harm organic solar cell research”, Nature Photon, 2014, 8, 669-672.
【31】 Jeffrey A. Christians, Joseph S. Manser, Prashant V. Kamat, “Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good”, J. Phys Chem. Lett., 2015, 6, 852-857.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2023-3-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明