博碩士論文 109226012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.226.248.77
姓名 蔣記宇(Chi-Yu Chiang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 聚對苯乙烯衍生物之超強耦合光致發光現象與電致發光共振腔元件之研究
(Ultrastrong coupling photoluminescence and electroluminescence of microcavity based on poly(p-phenylene vinylene) derivative)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-11-16以後開放)
摘要(中) 本論文主旨為利用聚對苯乙烯衍生物“Super Yellow”製作光學微共振腔和發光二極體(organic light-emitting diode, OLED)微共振腔,探討超強耦合物理和發光現象。理論上,在共振腔內若光子與在材料激發態(激子)之間產生強烈的能量耦合,將產生半光半物質之混成態,即偏極子(polariton)能態。在光子與激子能量相近時產生不同偏極子色散分支的能量差則稱為拉比分裂,可反應出耦合的強度。當拉比分裂能量超過激子能量20%以上則稱為超強耦合的狀態。
首先我們通過調整Super Yellow膜厚製作光學共振腔,探討主動層厚度與耦合強度的關係,並觀察偏極子光致發光變化。我們使用Hopfield Hamiltonian分析能量色散,證明足夠厚度的Super Yellow可產生超強耦合效應,且當設計厚度使偏極子下支能態匹配Super Yellow的發光峰能量,激子到偏極子的能量轉移和光致發光效率最高。進一步在OLED共振腔元件製作上,我們固定Super Yellow膜厚,利用ZnO和polyethylenimine (PEI)的混合層作為電子注入層,調整其比例提升元件的外部量子效率。在 ZnO:PEI的重量百分比為1:0.33的條件和25 nm厚度下,我們得到最佳化之超強耦合OLED元件,其最高外部量子效率2.79%,最高亮度達到6255 cd/m2,且拉比分裂能量為0.92 eV,與激子能量的比值達到33%。
摘要(英) This thesis exploited phenyl-substituted poly(para-phenylene vinylene) copolymer “Super Yellow” as the emissive layer to fabricate optical microcavity and OLED microcavity, and discuss ultrastrong coupling physics and emission phenomenon. In theory, when photon and exciton strongly interact in a cavity, a hybrid state, i.e., the so-called polariton state, will be generated. The Rabi splitting energy between different polariton dispersion branches is an indication of coupling strength, which occurs when the photon and exciton modes have the same energy. Ultrastrong coupling regime is reached when the Rabi splitting energy exceeds 20% of the exciton energy.
First, we study the optical microcavities with different Super Yellow film thicknesses to understand the thickness effect on the coupling strength and polariton photoluminescence (PL). By using Hopfield Hamiltonian to analyze the polariton dispersion curves, we demonstrate that a sufficiently thick Super Yellow film can generate ultrastrong coupling. When the thickness is designed to match the lower polariton mode and emission peak of Super Yellow, the highest transfer efficiency from exciton to polariton and strongest PL emission can be obtained. We further fabricate OLED microcavity by fixing the Super Yellow film, and adjust the ZnO:polyethylenimine (PEI) blend film as the electron injection layer to optimize the device efficiency. When using the ZnO:PEI film with 1:0.33 blend ratio and 25 nm thickness, we demonstrate an optimal ultrastrongly coupled OLED with the maximum external quantum efficiency of 2.79% and the highest luminance of 6255 cd/m2, while the Rabi splitting energy is 0.92 eV, corresponding to 33% of exciton mode energy.
關鍵字(中) ★ 超強耦合
★ 偏極子
★ 有機發光二極體
關鍵字(英) ★ polariton
★ Organic light emitting diode
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、緒論 1
1-1有機偏極子元件 1
1-2偏極子穩態 4
1-3高分子發光二極體 9
1-4研究動機 10
第二章、基本原理 11
2-1有機發光二極體理論 11
2-1-1有機發光二極體架構 12
2-1-2載子注入及傳輸機制 13
2-1-3外部量子效率 14
2-2多層膜矩陣光學理論 15
2-2-1膜矩陣 15
2-2-2斜向入射 18
2-2-3表面電漿共振 20
2-2-4電場分布與吸收 21
2-3耦合理論 23
2-3-1微共振腔的光子模態 23
2-3-2耦合常數與哈密頓算符 26
第三章、實驗方法 30
3-1製程儀器 30
3-1-1熱蒸鍍系統(Thermal Evaporation Coater) 30
3-1-2旋轉塗佈機(Spin Coater) 31
3-1-3手套箱(Glove Box) 31
3-1-4原子層沉積(Atomic Layer Deposition) 32
3-2量測設備 33
3-2-1半導體參數分析儀(SPA)及Photodiode 33
3-2-2光纖量測系統 34
3-2-3即時多角度光譜量測系統 35
3-2-4紫外/可見/紅外光光譜儀 38
3-2-5積分球量測系統 39
3-3實驗步驟 40
3-3-1溶液配置 40
3-3-2元件製程 41
3-4實驗材料 41
第四章、實驗結果與討論 43
4-1Super Yellow有機發光二極體 43
4-1-1Super Yellow發光層 44
4-1-2電子注入層對元件之影響 45
4-2 有機偏極子元件 48
4-2-1反射鏡 49
4-2-2強弱耦合元件與拉比分裂強度 51
4-2-3元件效率 58
第五章、結論與未來展望 62
參考文獻 63

參考文獻 [1] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[2] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling,"
[3] W. Du, S. Zhang, Q. Zhang, and X. Liu, "Recent progress of strong exciton–photon coupling in lead halide perovskites," Advanced Materials, vol. 31, no. 45, p. 1804894, 2019.
[4] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[5] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998
[6] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, p. 033305, 2010
[7] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, no. 23, p. 3314, 1992.
[8] S. Kéna-Cohen and S. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, no. 6, pp. 371-375, 2010.
[9] J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, "Strong coupling in a microcavity LED," Physical review letters, vol. 95, no. 3, p. 036401, 2005.
[10] A. Genco, A. Ridolfo, S. Savasta, S. Patanè, G. Gigli, and M. Mazzeo, "Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime,"
[11] D. G. Lidzey and D. M. Coles, "Strong Coupling in Organic and Hybrid-Semiconductor Microcavity Structures," in Organic and Hybrid Photonic Crystals, ed: Springer, 2015, pp. 243-273.
[12] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, p. 121303, 2013.
[13] T. Virgili, D. Coles, A.M. Adawi et al.,"Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity"Phys. Rev. B 83, 245309 (2011).
[14] A.I. Tartakovskii, M. Emam-Ismail, R.M. Stevenson et al., "Relaxation bottleneck and its suppression in semiconductor microcavities"Phys. Rev. B 62, R2283 (2000).
[15] Grant H. Lodden and Russell J. Holmes,"Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor"Phys. Rev. B 82, 125317 ,2010.
[16] Richard T. Grant,"Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye",adv Optical Mater.4,1615-1623(2016)
[17] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, " Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, p. 3316, 1999.
[18] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[19] T. Chiba, Y.-J. Pu, and J. Kido, "Solution-processable electron injection materials for organic light-emitting devices," Journal of Materials Chemistry C, vol. 3, no. 44, pp. 11567-11576, 2015
[20] M. Sessolo and H. J. Bolink, " Hybrid organic–inorganic light‐emitting diodes," Advanced Materials, vol. 23, no. 16, pp. 1829-1845, 2011.
[21] N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. A. Haque, "A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer," Advanced Materials, vol. 21, no. 34, pp. 3475-3478, 2009.
[22] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition metal oxides for organic electronics: energetics, device physics and applications," Advanced materials, vol. 24, no. 40, pp. 5408-5427, 2012.
[23] S. Burns, J. MacLeod, T. Trang Do, P. Sonar, and S. D. Yambem, "Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs," Scientific Reports, vol. 7, no. 1, p. 40805, 2017/01/20 2017
[24] Florian Le Roux, Robert A. Taylor, and Donal D. C. Bradley"Enhanced and Polarization-Dependent Coupling for Photoaligned Liquid Crystalline Conjugated Polymer Microcavities"ACS Photonics 3, 746–758 2020
[25] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers," Applied Physics Letters, vol. 91, no. 25, p. 253504, 2007.
[26] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
[27] H. Lee et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, no. 4, p. 279, 2008.
[28] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, no. 25, p. 967, 1965.
[29] P. Vacca et al., "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance," The Journal of Physical Chemistry C, vol. 111, no. 46, pp. 17404-17408, 2007.
[30] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, no. 781, pp. 173-181, 1928.
[31] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, no. 1-3, pp. 23-29, 1994.
[32] 林煒紘, "超強耦合高分子發光二極體之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/49acd6
[33] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, no. 12, p. 123104, 2008
[34] 李正中, "薄膜光學與鍍膜技術," ed: 第九版, 藝軒圖書出版社, 2020.
[35] Geum-Yoon Oh,"Analysis of surface plasmon resonance with Goos-hanchen shift using FDTD method"IEEE Xplore, 2008
[36] 黃柏翔, "聚對苯乙烯衍生物高效率強耦合有機發光二極體之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available: https://hdl.handle.net/11296/y3nkta
[37] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[38] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[39] M. Fox, Quantum optics: an introduction. OUP Oxford, 2006
[40] J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, "Solid state cavity QED: Strong coupling in organic thin films," Organic Electronics, vol. 8, no. 2-3, pp. 94-113, 2007.
[41] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[42] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," Semiconductor Quantum Science and Technology, vol. 105, pp. 89-151, 2020.
[43] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[44] 邱國賢, "超強耦合之有機高分子電激發偏極子元件," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022. [Online]. Available: https://hdl.handle.net/11296/6mwm2r
[45] 陳頤, "即時性多角度光譜儀系統之校正與應用," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/2a84c5
[46] S. Gambino, A. K. Bansal, and I. D. W. Samuel, "Photophysical and charge-transporting properties of the copolymer SuperYellow," Organic Electronics, vol. 14, no. 8, pp. 1980-1987, 2013.
[47] Y. Zhou et al., "A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics," Science, vol. 336, no. 6079, pp. 327-332, 2012.
[48] T. Lanz, E. M. Lindh, and L. Edman, "On the Asymmetric Evolution of the Optical Properties of a Conjugated Polymer during Electrochemical p-and n-type Doping," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4706-4715, 2017.
[49] S.R.Tseng, Y.S.Chen and H.F.Meng"Electron transport and electroluminescent efficiency of conjugated polymers" Synthetic Metals 159 (2009) 137–141
[50] B. Gündüz, "Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents," Polymer Bulletin, vol. 72, no. 12, pp. 3241-3267, 2015
[51] R. Kaçar, S. P. Mucur, F. Yıldız, S. Dabak, and E. Tekin, "Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO: PEI) nano-composite interfacial layer," Nanotechnology, vol. 28, no. 24, p. 245204, 2017.
[52] R. J. Holmes and S. R. Forrest"Strong Exciton-Photon Coupling and Exciton Hybridization in a Thermally Evaporated Polycrystalline Film of an Organic Small Molecule" Physical Review Letters ,vol 93, no 18 ,2004.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2022-11-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明