博碩士論文 109226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.145.180.66
姓名 潘黎燕兒(PHAN LE YEN NHI)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱
(GLUCOSE DETECTION BY NITRIDE-BASED SURFACE-ENHANCED RAMAN SPECTROSCOPY)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面增益拉曼散射(surface-enhanced Raman spectroscopy, SERS)具備極高的辨識度、敏感度,在生醫感測的應用上有很大的潛力。在本研究中,我們以InGaN量子井及金奈米顆粒,製作一種新式的SERS感測結構,應用在細胞培養液裡的葡萄糖感測。我們發現,當金的厚度從40 nm增加到 50 nm、量子井的數量從 0 增加到 3 層後,葡萄糖的SERS強度可提升100倍以上。此結果顯示,量子井可以在磊晶片表面侷限高濃度的共振電子,在雷射的激發下,這些高濃度的電子會與金表面的自由電子共振,因而提升SERS強度。此氮化物SERS感測晶片,可以在細胞培養液裡量測到濃度低達0.5 g/L (2.8x10-3 M)的葡萄糖,在0.5 - 5 g/L ( 2.8x10-2 - 2.8x10-3 M)的濃度範圍裡,葡萄糖的濃度與SERS強度成正比。
摘要(英) Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool in material and life sciences due to its inherent characteristics, such as fingerprint recognition capabilities and high sensitivity. This work presents a new SERS biosensor substrate design, using InGaN quantum wells (QWs) and gold nanoparticles (Au NPs) for glucose detection in a chemically defined (CD) solution. The SERS intensity of glucose can be enhanced by two orders of magnitude when the Au thickness for NPs was increased from 40 nm to 50 nm, and QW number from 0 to 3. The QWs embedded at shallow depths from the surface allow the SERS substrate to capture electrons and pump them (through laser excitation) to the hot spots, increasing the SERS intensity. This QW-based SERS biosensor can detect the glucose in CD with the concentration down to 0.5 g/L (2.8×〖10〗^(-3) M) and exhibit the linear dynamic response in the range of 0.5-5 g/L (2.8×〖10〗^(-2)-2.8×〖10〗^(-3) M).
關鍵字(中) ★ 表面增益拉曼散射 關鍵字(英) ★ SERS
★ biosensors
★ glucose detection
論文目次 GLUCOSE DETECTION BY NITRIDE-BASED SURFACE-ENHANCED RAMAN SPECTROSCOPY I
CHINESE ABSTRACT II
ENGLISH ABSTRACT III
ACKNOWLEDGMENT IV
TABLE OF CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES IX
EXPLANATION OF ABBREVIATIONS XI
CHAPER 1: INTRODUCTION. 1
1.1. Motivation and overview: 1
1.2. Surface-Enhanced Raman Spectroscopy theory (SERS): 3
1.2.1. Mechanism of SERS: 5
1.2.1.1. Charge transfer (CT) mechanism: 5
1.2.1.2. Electromagnetic (EM) enhancement mechanism: 6
1.2.2. Application of SERS in bioscience: 7
1.2.3. Quantum well (QW) and its advantages in SERS: 8
1.3. Glucose solution and CD solvent: 9
1.3.1. Glucose: 9
1.3.2. CD solvent: 10
1.4. SERS substrate in glucose detection: 10
1.4.1. Gold nanoparticles (Au NPs): 10
1.4.2. Glucose detection by SERS substrate: 12
1.5. Research objective: 13
CHAPER 2: EXPERIMENT. 15
2.1. Sample preparation: 15
2.1.1. Quantum wells structure: 15
2.1.2. Double cleansing process: 16
2.1.3. Metal deposition: 16
2.1.4. Annealing process: 18
2.2. Solution preparation: 19
2.3. Measurement: 19
CHAPER 3: RESULTS AND DISCUSSION. 21
3.1. The effect of Au NPs thickness on glucose measurement: 21
3.2. The effect from QW number: 25
3.3. The sensitivity of SERS substrate: 29
CHAPER 4: CONCLUSION AND FUTURE PERSPECTIVE. 32
4.1. Conclusion: 32
4.2. Future Perspective: 32
REFERENCES 34
參考文獻 [1] Bolaños, K., et al. (2019). "Capping gold nanoparticles with albumin to improve their biomedical properties." International journal of nanomedicine 14: 6387.
[2] Ceja-Fdez, A., et al. (2014). "Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium." Rsc Advances 4(103): 59233-59241.
[3] Sooraj, K., et al. (2018). "SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays." Applied Surface Science 447: 576-581.
[4] Wu, Z.-S., et al., Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering. Talanta, 2006. 70(3): p. 533-539.
[5] Botta, R., A. Rajanikanth, and C. Bansal, Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS). Sensing and bio-sensing research, 2016. 9: p. 13-16.
[6] Peters, R.F., et al., Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. JoVE (Journal of Visualized Experiments), 2015(97): p. e52712. [7] Shafer-Peltier, K.E., et al., Toward a glucose biosensor based on surface-enhanced Raman scattering. Journal of the American Chemical Society, 2003. 125(2): p. 588-593.
[8] Yonzon, C.R., et al., A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Analytical Chemistry, 2004. 76(1): p. 78-85.
[9] Sun, X. (2021). "Glucose detection through surface-enhanced Raman spectroscopy: a review." Analytica Chimica Acta: 339226.

[10] Israelsen, N. D., et al. (2015). "Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction." The Scientific World Journal 2015.
[11] McNay, G., et al. (2011). "Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications." Applied spectroscopy 65(8): 825-837.
[12] Zong, C., et al. (2018). "Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges." Chemical reviews 118(10): 4946-4980.
[13] Sharma, B., et al. (2012). "SERS: Materials, applications, and the future." Materials today 15(1-2): 16-25.
[14] Syahir, A. (2014). "Label-free photonics biosensor transducing nano-biological events." Journal of Biochemistry, Microbiology and Biotechnology 2(1): 32-38.
[15] Kumar, S., et al. (2020). Surface-enhanced raman scattering: Introduction and applications. Recent Advances in Nanophotonics-Fundamentals and Applications, IntechOpen London, UK: 1-24.
[16] Le Ru, E. and P. Etchegoin (2009). Principles of Surface Enhanced Raman Spetroscopy, Elsevier, Amsterdam.
[17]Brown, B.H., et al., Medical Physics and Biomedical Engineering: Medical Science Series. 2017: CRC Press.
[18] Procházka, M. (2016). "Surface-Enhanced Raman Spectroscopy." Biological and medical physics, biomedical engineering: 1-221.
[19] Sun, X. (2021). "Glucose detection through surface-enhanced Raman spectroscopy: a review." Analytica Chimica Acta: 339226.
[20] Cara, E., et al., Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2020. 8(46): p. 16513-16519.
[21] Kumar, S., et al., Surface-enhanced raman scattering: Introduction and applications, in Recent Advances in Nanophotonics-Fundamentals and Applications. 2020, IntechOpen London, UK. p. 1-24.
[23] Zong, C., et al., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews, 2018. 118(10): p. 4946-4980.
[24] Sperling, R. A., et al. (2008). "Biological applications of gold nanoparticles." Chemical Society Reviews 37(9): 1896-1908.
[25] Cheng Zong, Mengxi Xu, Li-Jia Xu, Ting Wei, Xin Ma, Xiao-Shan Zheng, Ren Hu, and Bin Ren. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges . Chemical Reviews. Chem. Rev. 2018, 118, 10, 4946–4980.
[26] Oliver, N., et al. (2009). "Glucose sensors: a review of current and emerging technology." Diabetic Medicine 26(3): 197-210.
[27] Chisanga, M., et al. (2019). "Enhancing disease diagnosis: biomedical applications of surface-enhanced Raman scattering." Applied Sciences 9(6): 1163
[28] McAnally, M. O., et al. (2017). "Quantitative determination of the differential raman scattering cross sections of glucose by femtosecond stimulated raman scattering." Analytical chemistry 89(13): 6931-6935.
[29] Sun, X. and H. Li (2013). "Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy." Nanotechnology 24(35): 355706.
[30] Arbuz, A., et al. (2022). "How gap distance between gold nanoparticles in dimers and trimers on metallic and non-metallic SERS substrates can impact signal enhancement." Nanoscale Advances 4(1): 268-280.
[31] García-Vidal, F. J. and J. Pendry (1996). "Collective theory for surface enhanced Raman scattering." Physical Review Letters 77(6): 1163.
[32] Nguyen, T. A. N., et al. (2021). "Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy." ACS Photonics 8(8): 2410-2416.
[33] Khalil, S. M., et al. (2013). "A theoretical study of carbohydrates as corrosion inhibitors of iron." Zeitschrift für Naturforschung A 68(8-9): 581-586.
[34] Chien, F.-C., et al. (2021). "Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots." ACS Applied Nano Materials 4(3): 2614-2620.
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明