博碩士論文 109256004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:18.220.191.122
姓名 涂浩育(Hao-Yu Tu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 分時脈衝控制白光LED產生多色光研究
(Research on PWM Control of White LED to Generate Multi-color Light)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 現今白光LED的產生方式有透過藍光LED晶片激發螢光粉產生白光,螢光粉組成類型則有(1)單劑型:使用產生黃光的Silicate螢光粉或YAG螢光粉,(2)混合型:使用產生綠光的β-SiAlON螢光粉加產生紅光的KSiF螢光粉。
一般白光LED只考慮到白光色點是否可以更為精準,而其應用在顯示器是否可以得到更大的色域涵蓋範圍,並不會將混光後的白光分光再使用,因為不同螢光粉的激發高峰和能量消散有時間差,到達激發高峰前和消散過程中有連續的顏色變化,本研究利用調控時間差以觀察到白光LED的多色變化。
本研究利用脈衝寬度調變(PWM)方式,固定輸入電源的頻率,以改變佔空比(Duty cycle)的方式來進行實驗,用藍光LED晶片激發混合型螢光粉;產生綠光的β-SiAlON(波長530nm)螢光粉和產生紅光的KSiF(波長700nm)螢光粉;以10Hz的發光頻率,分別以佔空比40%、50%、60%、70%、100%等五個條件值,相對的開關時間間隔分別為0.04秒、0.05秒、0.06秒、0.07秒、常開,使用高速攝影機以240fps的拍攝條件觀察兩種類螢光粉激發時間差,再以1Hz和佔空比50%作為參考背景,比較各個條件下的光色數量和能量變化。
實驗結果顯示:
1. 藍光單獨照射β-SiAlON螢光粉時,激發到能量高峰需時約0.0042秒,β-SiAlON螢光粉能量消散需時約0.0042秒,上升與下降的時間比例約1:1,藍光單獨照射KSiF螢光粉時,激發到能量高峰需時約0.0168秒,KSiF能量消散需時約0.063秒,上升與下降的時間時間比例約1:4。
2. 藍光照射β-SiAlON加KSiF混和型螢光粉時,因β-SiAlON螢光粉,激發到能量高峰產生綠色的時間為0.0042秒比KSiF到能量高峰產生紅色的時間0.0168秒快4倍,所以會先看到青色光再看到白色光。
3. 藍光照射β-SiAlON加KSiF混和型螢光粉時,因β-SiAlON螢光粉,綠光能量消散的時間為0.0042秒比KSiF螢光粉紅光能量消散的時間0.063秒快15倍,所以當斷電時,青色光只有0.0042秒,之後0.063秒的過程只看到紅色光斑逐漸轉暗到完全熄滅,混和型螢光粉白光LED亮暗全程時間,到達白光能量高峰時間為0.0168,消散時間為0.063,與兩種螢光粉分開獨立照射所得結果完全一致。
4. 實驗中混和型螢光粉白光LED佔空比40%、50%、60%、70%中ON的時間,分別為0.4、0.5、0.6、0.7,都大於到達能量高峰的0.0168秒,所以無法避開合成白光的時間,所以在形成白光前的顏色變化都一樣。
5.在能量高峰前,ON時間低於時0.0168秒,能調制出R:G:B比例的光,在OFF後,能調制出R:G:B、R:G、R比例的光。
6.人眼視覺暫留約0.0625秒,當PWM的佔空比Ton的時間小於0.0625秒時就可以看到較長時間的紅光。
在現階段LED或是LCD產業中,會面臨白光LED混光時間無法被清楚定義,而造成產品產生無法預期的雜訊光;本研究方法可以解決所有LED應用之產品在檢驗和設計過程中,改善電源的開關時序,以避免產生雜訊光,另一方面可以提升單色光LED透過簡單的電源控制方式而產生多色光,增加單一LED可應用的場景,如光通訊、顯示、照明等,以減少資源的浪費。
摘要(英) Currently, white LEDs are generated by exciting fluorescent powders through blue LED chips to produce white light. Types of fluorescent powder compositions include: (1) single-agent type: using Silicate fluorescent powder or YAG fluorescent powder to generate yellow light, and (2) mixed type: using β-SiAlON fluorescent powder to produce green light combined with KSiF fluorescent powder to produce red light.
In general, white LEDs only consider whether the white light chromaticity can be more precise. Their application in displays does not utilize the split light after mixing white light, because different fluorescent powders have time differences in peak excitation and energy dissipation. Continuous color changes occur before reaching the excitation peak and during the dissipation process. This study observes multi-color changes in white LEDs by adjusting these time differences.
This study uses Pulse Width Modulation (PWM) to experiment by fixing the input power frequency and varying the duty cycle. It employs blue LED chips to excite mixed-type fluorescent powders: β-SiAlON (wavelength 530nm) and KSiF (wavelength 700nm). At an emission frequency of 10Hz, five conditions of duty cycle—40%, 50%, 60%, 70%, and 100%—correspond to switch time intervals of 0.04 seconds, 0.05 seconds, 0.06 seconds, 0.07 seconds, and constant on. High-speed cameras record at 240 frames per second (fps) to observe the time differences in excitation between the two types of fluorescent powders. A reference background of 1Hz and 50% duty cycle is used to compare changes in light color quantity and energy under various conditions.
The experimental results show:
1. When blue light alone irradiates β-SiAlON phosphor, it takes about 0.0042 seconds to reach the energy peak, and the energy dissipation of β-SiAlON phosphor takes about 0.0042 seconds. The rise and fall time ratio is approximately 1:1. When blue light alone irradiates KSiF phosphor, it takes about 0.0168 seconds to reach the energy peak, and the energy dissipation of KSiF phosphor takes about 0.063 seconds. The rise and fall time ratio is approximately 1:4.
2. When blue light irradiates a mixture of β-SiAlON and KSiF phosphors, the time for β-SiAlON phosphor to reach the energy peak and emit green light is 0.0042 seconds, which is 4 times faster than the 0.0168 seconds required for KSiF phosphor to reach the energy peak and emit red light. Therefore, cyan light is observed first before white light.
3. When blue light illuminates a mixture of β-SiAlON and KSiF phosphors, the time for β-SiAlON phosphor to dissipate its green light energy is 0.0042 seconds, which is 15 times faster than the 0.063 seconds required for KSiF phosphor to dissipate its red light energy. Therefore, when the power is cut off, cyan light is visible for only 0.0042 seconds, followed by a process of gradually dimming red light over 0.063 seconds until complete extinction. Throughout the cycle of brightness and darkness of the mixed phosphor white LED, the time to reach the peak white light energy is 0.0168 seconds with a dissipation time of 0.063 seconds, which aligns entirely with the results obtained from separately illuminating the two phosphors.
4. In the experiment, for the mixed phosphor white LEDs with duty cycles of 40%, 50%, 60%, and 70%, the ON times are 0.4, 0.5, 0.6, and 0.7 seconds, respectively. All these times exceed the 0.0168 seconds required to reach the energy peak for white light. Therefore, it is not possible to avoid the time required to synthesize white light, resulting in consistent color changes before the formation of white light.
5. When the ON time is less than 0.0168 seconds before reaching the energy peak, it can modulate light with an R:G:B ratio. After turning OFF, it can modulate light with R:G:B, R:G, and R ratios.
6. The human naked eyes retains visual impressions for about 0.0625 seconds. When the duty cycle is below 21% or the frequency exceeds 20Hz, continuous red light can be perceived.
In the current LED or LCD industry, the undefined mixing time of white light LEDs leads to unpredictable optical noise in products. This study proposes a method to improve the power switching timing during testing and design processes, thereby preventing the occurrence of optical noise across all LED applications. Additionally, it enables monochromatic LEDs to produce multicolored light through simple power control methods, thereby expanding their applicability in scenarios such as optical communication, displays, lighting, etc., and reducing resource wastage.
關鍵字(中) ★ 白光 LED
★ 螢光粉
★ 脈衝寬度調變 (PWM)
★ 佔空比 (Duty cycle)
★ 光色變化
★ 人眼視覺暫留
關鍵字(英)
論文目次 摘要 i
Abstract iv
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
1-3 研究貢獻 3
第二章 基本原理 5
2-1 白光LED原理 5
2-2 螢光粉原理 7
2-3 藍光LED晶片 9
2-4 LED封裝架構 10
2-5 脈衝寬度調變原理 12
2-6 PWM調光對視覺暫留的影響 14
第三章 實驗與結果分析 16
3-1 實驗設備 16
3-2 實驗模型 21
3-3 實驗步驟 22
3-4 實驗結果 23
3-5 結果分析 31
第四章 驗證實驗結果與分析 33
4-1 驗證實驗設計 33
4-2 驗證實驗模型 34
4-3 驗證實驗條件設定 35
4-4 驗證實驗步驟 36
4-5 驗證實驗結果 37
4-6 驗證實驗結果 44
4-7 實驗討論 54
第五章 結論與未來展望 57
5-1 研究結論 57
5-2 未來展望 58
參考文獻 60
參考文獻 [1] Schubert, E. F. (2006). Light-Emitting Diodes. Cambridge University Press.
[2] Nakamura, S., Pearton, S., & Fasol, G. (2000). The Blue Laser Diode: The Complete Story. Springer.
[3] Erickson, R. W., & Maksimovic, D. (2007). Fundamentals of Power Electronics. Springer.
[4] Jain, A., & Seitzman, J. M. (2010). High-speed imaging of luminescence and chemiluminescence in reacting flows. Applied Physics B, 100(2), 231-241.
[5] Tsao, J. Y., Han, J., Haitz, R. H., & Pattison, P. M. (2018). The Blue LED Nobel Prize: Historical context, current scientific understanding, human benefit. Annalen der Physik, 530(1), 1700117.
[6] Narendran, N., & Deng, L. (2002). Color rendering properties of LED light sources. Proceedings of SPIE, 4776, 61-67.
[7] Steigerwald, D. A., Bhat, J. C., Collins, D., Fletcher, R. M., Holcomb, M. O., Ludowise, M. J., ... & Wierer, J. J. (2002). Illumination with solid state lighting technology. IEEE Journal on Selected Topics in Quantum Electronics, 8(2), 310-320.
[8] Pimputkar, S., Speck, J. S., DenBaars, S. P., & Nakamura, S. (2009). Prospects for LED lighting. Nature Photonics, 3(4), 180-182.
[9] Decker, A. (2013). Fundamentals of high-brightness LEDs. Physics Today, 66(2), 32-37.
[10] Lin, R., & Li, C. (2005). Phosphor-converted white light-emitting diodes packaging and applications. IEEE Transactions on Advanced Packaging, 28(2), 356-364.
[11] Kim, J. K., & Schubert, E. F. (2008). Transcending the replacement paradigm of solid-state lighting. Optics Express, 16(26), 21835-21842.
[12] Gill, M., & Singh, V. (2015). High speed and high dynamic range imaging for LED-based displays. IEEE Transactions on Consumer Electronics, 61(3), 336-341.
[13] Tsao, J. Y., Saunders, H. D., Creighton, J. R., Coltrin, M. E., & Simmons, J. A. (2010). Solid-state lighting: an energy-economics perspective. Journal of Physics D: Applied Physics, 43(35), 354001.
[14] Holcomb, M. O., Steigerwald, D. A., Bhat, J. C., Collins, D., Fletcher, R. M., Ludowise, M. J., ... & Wierer, J. J. (2004). White LEDs for solid-state lighting: Towards improved performance. Proceedings of SPIE, 5366, 23-34.
[15] Denault, K. A., Brgoch, J., Guthrey, H., Gaultois, M. W., Tsai, C. Y., Chen, X., & Seshadri, R. (2014). Evidence for a critical radius in the efficiency of phosphors for solid-state white lighting. ACS Applied Materials & Interfaces, 6(16), 11874-11879.
[16] Müller-Meskamp, L., Kim, H., Roch, T., Eckardt, S., Roch, T., Bock, R., ... & Leo, K. (2012). Efficiency enhancement of organic light-emitting diodes using micro lenses made of photoresist. Optics Express, 20(19), A693-A704.
[17] Lin, C. C., & Liu, R. S. (2011). Advances in phosphors for light-emitting diodes. Journal of Physical Chemistry Letters, 2(11), 1268-1277.
[18] Lin, C. C., & Liu, R. S. (2015). Development of phosphors with high thermal stability for LED applications. Chemical Society Reviews, 44(15), 1053-1066.
[19] Leung, S. F., Zhang, Q., Xiu, F., & Ho, J. C. (2014). Recent progress in LED backlight technologies for advanced displays. Journal of Display Technology, 10(1), 37-44.
[20] Khan, M. R., Munna, M. A., & Rahman, M. (2018). An overview of high-power white LED packages: Status, trends, and future directions. IEEE Transactions on Electron Devices, 65(10), 4193-4203.
[21] Tsao, J. Y., Pattison, P. M., Krames, M. R., & Kobayashi, N. (2018). Light-emitting diodes: Status and future. Journal of Display Technology, 14(9), 405-414.
[22] Xie, R. J., Hirosaki, N., & Takeda, T. (2010). Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white LEDs. Applied Physics Express, 3(6), 062102.
[23] Bachmann, V., Ronda, C., & Meijerink, A. (2009). Temperature quenching of yellow Ce3+-doped YAG phosphors. Chemistry of Materials, 21(10), 2077-2084.
[24] Yadav, A., Kumar, A., & Pal, B. P. (2014). Performance enhancement of white LED through hybrid phosphor system. Optics Communications, 313, 56-60.
[25] Liu, C. H., & Lo, Y. C. (2013). Optimization of phosphor-converted white LEDs for color rendering and luminous efficacy. IEEE Photonics Journal, 5(6), 8200908.
[26] Luo, X., Zheng, H., Liu, S., & Wu, H. (2014). Effects of packaging design on the optical performance of white LEDs. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(11), 1829-1837.
[27] Shi, F. G., & Luo, X. (2004). Effects of packaging materials on optical performance of high-power white LEDs. Journal of Electronic Materials, 33(3), 240-244.
[28] Fikri, M., & Lasance, C. J. (2009). Thermal management of high-power LEDs. Electronics Cooling, 15(3), 34-40.
[29] Lin, R. X., Luo, H., Wu, W. Y., & Kuo, H. C. (2013). Improving light extraction efficiency of GaN-based LEDs using photonic crystal and nano-patterned sapphire substrates. Optics Express, 21(4), 4927-4935.
[30] Kim, H., Park, S. H., Park, Y. K., & Lee, J. H. (2011). Highly efficient white LEDs using colloidal quantum dot nanocrystals. Nanoscale Research Letters, 6(1), 378.
[31] Lee, S. Y., Lee, J. H., Choi, Y. J., & Kim, H. J. (2014). Improving color quality of white LEDs by using dual-wavelength phosphor combination. IEEE Photonics Technology Letters, 26(2), 157-159.
[32] Smith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts of Chemical Research, 43(2), 190-200.
[33] Danz, R., & Reineke, S. (2016). White organic light-emitting diodes: Status and perspective. Laser & Photonics Reviews, 10(5), 923-945.
[34] Zhu, B. P., et al. "Optical properties and potential applications of rare-earth doped fluoride phosphors." Journal of Alloys and Compounds 636 (2015): 1-8.
[35] Cao, Wei, et al. "High-speed imaging techniques and applications in materials science." Materials Today Advances 11 (2021): 100145.
[36] Smith, Adam R., et al. "Temporal effects on brightness perception due to temporal color mixing in LED illumination." Journal of the Society for Information Display 26.3 (2018): 163-172.
[37] Kumar, Praveen, et al. "Spectral characteristics of blue chip white LEDs: An analysis for lighting application." AIP Conference Proceedings 2345.1 (2021): 030010.
[38] Horiba. (n.d.). What is the Jablonski Diagram? 取自 https://www.horiba.com/twn/scientific/technologies/fluorescence-spectroscopy/what-is-the-jablonski-diagram/
指導教授 張榮森(Rong-Seng Chang) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明