博碩士論文 109256014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.137.214.83
姓名 陳緯哲(Wei-Zhe Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 微環形共振腔耦合馬赫曾德爾干涉儀之研究
(Study of Ring Resonators Coupled with Mach-Zehnder Interferometers)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究★ 微環形共振腔非線性效應與壓縮光之研究
★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究★ 雙重曝光氮化矽環形共振腔製作與熱效應調製
★ 非對稱環形共振腔耦合與品質因子控制★ 奈米壓印製作環形共振腔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
當前因無線網路技術(Wireless Fidelity, Wi-Fi)與網路終端設備的高速化,過往所常用的銅線傳輸,已無法面對大量數據與高速化傳輸狀態。因應此問題,我們藉由光纖傳輸方式來進行訊號傳輸,並且使用到矽光子技術,藉由矽光子技術來達到高頻寬、高傳輸速度與高頻寬效果,來因應大量數據傳輸之需求。而在醫療應用部分,生物檢測也有一定的應用市場,可以透過材料與結構特性來進行細胞偵測,在醫療應用上可達到方便攜帶、響應速度快等優點,而在矽光子技術的發展中。其環形共振腔(Ring Resonator)以及馬赫曾德爾干涉儀(Mach Zehnder Interferometer)皆是主要關鍵光學元件,而以上光學元件應用,又有分為線性元件與非線性元件,線性元件應用有調製器、感測器、全光開關、濾波器等,而在非線性元件應用上有波長分波多工(Wavelength Division Multiplexing)。
本論文,主要以氮化矽(Si3N4)波導製作而成的微環形共振腔耦合馬赫曾德爾干涉儀所搭配而成的結構,並對其整體結構覆蓋一層二氧化矽(SiO2),透過薄膜加熱器於馬赫曾德爾干涉儀下臂進行熱調製,透過這樣的方式來針對環型共振腔進行濾波功能的開關動作。我們將會透過環形共振腔設計中其中一種全通濾波器(All Pass Ring)結構,來進行應用上設計,藉由全通濾波器所產生的共振峰之自由頻譜範圍,去定義出馬赫曾德爾干涉儀下臂光程差長度,並在透過加熱器所產生的熱來改變馬赫曾德爾干涉儀下臂的有效折射率,此時將會改變下臂相位,透過這樣的方式會與上臂相位產生相位差,下上臂結合後,來觀察下臂相位對於上臂全通濾波器所產生共振頻率影響,透過整合全通濾波器的自由光譜範圍FSR與MZI的FSR來進行優化設計,使濾波器能夠在過濾和擷取功能間實現切換。

第二部分主要是針對環形共振腔(Ring Resonator)及馬赫曾德爾干涉儀(Mach Zehnder Interferometer)結構先使用MATLAB將個別結構進行工作原理確認與穿透頻譜驗證,我們會先針對環型共振腔共振條件進行說明,並且分析2種環形共振腔的差別,之後開始探討環形共振腔之耦合狀態及共振的光功率比例。因本論文只使用到All Pass Ring,故我們會針對此結構之直波導進入環形波導行走一圈後的光功率損耗比〖K_p〗^2、光從直波導傳播至環型波導的光功率比〖K_e〗^2、自由頻譜(Free Spectral Range)、半峰全寬(Full Width at Half Maximum)、精緻值(Finesse)、品質因子(Quality Factor)等參數進行探討。
之後透過RSoft FemSIM軟體來進行模擬,主要是確認各別材質與結構參數下的有效折射率與群折射率以及單一橫向電波TE(Transverse electric)模態的穩定度。並將以上參數轉成單一元件方式匯出為製程設計套件(Process Design Kit, PDK),之後再匯入OptSIM進行模擬,此方法主要是透過光子電路的方式來避免長時間模擬,並且在進行MATLAB與OptSIM模擬結果確認,再進一步去確認Ring Coupling MZI結構在這樣的串接下的模擬。
並且針對熱調製部分進行RSoft熱光效應模擬來得出其熱影響波導有效折射率的多寡。並將其模擬結果轉為製程設計套件(Process Design Kit, PDK)方式匯入OptSIM,進行不同溫度變化下於不等臂長的馬赫曾德爾干涉儀干涉結構下的相位變化,並透過光強度的變化,並確認移動的相位。
第三部分我們將透過以上的理論與手法,先透過五種結構來進行探討,探討單一馬赫曾德爾干涉儀等臂長與不等臂長差異,及環耦合等臂長與不等臂長馬赫曾德爾干涉儀結構下,其被動特性與主動調製後之特性分析,並進行兩種熱開關結構之設計,透過模擬方式來確認加熱器與波導在不同高度、不同材料下來進行熱與折射率關係,之後使用不同的臂長來針對全通濾波器之共振峰進行開關動作,以模擬方式來確認馬赫曾德爾干涉儀下臂長度是否透過熱調製方式來進行開關動作,而因應光通訊應用波長,故我們將考慮其1540nm~1560nm區間,其開關效果得呈現,並在因應光罩Layout設計與製程的通用性,進行結構面積縮小化設計,針對其波導彎曲尺寸進行FullWAVE FDTD模擬,來分析不同彎曲半徑下損耗的變化,並輔助我們去選擇使用。
第四部份進行樣品製程與實物量測架構及設備進行說明,並且針對擬合方法進行說明,首先我們將針對量測架構所使用設備進行介紹,之後我們將樣品製程分為被動元件製程說明與加熱器元件製程說明,並針對環耦合等臂長與不等臂長馬赫曾德爾干涉儀結構下實際樣品進行被動量測與主動偏壓進行模擬交叉比較,之後進行兩種熱開關結構之樣品量測分析。
最後在第五章節針對本論文被動數據與調製數據來確認調製效果,進行優化改善以及調至最佳化探討。
摘要(英) ABSTRACT
With the rapid development of wireless networking technology (Wi-Fi) and the acceleration of network terminal devices, traditional copper wire transmission can no longer meet the needs for massive data throughput and high-speed transmission. In response, this thesis explores the use of optical fiber transmission supplemented by silicon photonics technology, which achieves high bandwidth and transmission speeds necessary for large-scale data transfer. Additionally, in medical applications, biosensing has a significant marKet presence. Utilizing the material and structural properties for cell detection offers advantages such as portability and rapid response, crucial in medical applications.
Silicon photonics technology, particularly the Ring Resonator and Mach-Zehnder Interferometer (MZI), are Key optical components in this research. These components are categorized into linear devices such as modulators, sensors, all-optical switches, and filters, and nonlinear devices including applications in Wavelength Division Multiplexing (WDM).
This thesis primarily focuses on a structure created from silicon nitride (Si3N4) waveguides that form micro-ring resonators coupled with Mach-Zehnder Interferometers, overlaid with a silicon dioxide (SiO2) layer. Thermo-Optic modulation is applied using thin-film heaters on the lower arm of the Mach-Zehnder to control the filtering function of the ring resonator. An all-pass filter within the ring resonator design is utilized to determine the optical path length difference in the Mach-Zehnder′s lower arm by modifying the effective refractive index through heating. This alteration in phase between the arms after combination allows for the observation of how changes in the lower arm phase affect the resonance frequency produced by the upper arm all-pass filter. The design optimizes the integration of the all-pass filter′s free spectral range (FSR) with the MZI’s FSR to facilitate switching between filtering and signal extraction functions.
The second part of this study validates the operational principles and transmission spectra of the ring resonator and Mach-Zehnder structures using MATLAB. Initial discussions cover the resonance conditions of the ring resonators and the distinctions between two types of ring resonators. The coupling states and the proportion of resonant optical power are analyzed. Importantly, parameters such as the power loss ratio 〖K_p〗^2 after light completes a cycle within the ring from the straight waveguide, and the power coupling ratio 〖K_e〗^2from the straight to the ring waveguide, along with Free Spectral Range (FSR), Full Width at Half Maximum (FWHM), Finesse, and Quality Factor, are thoroughly investigated.
Simulations using RSoft FemSIM confirm the effective and group refractive indices under various material and structural parameters, and the stability of the transverse electric (TE) mode. These parameters are converted into a single component format and exported as a Process Design Kit (PDK) for integration into OptSIM simulations. This approach streamlines photonics circuit modeling and verification, reducing the simulation time required. Thermal-Optic modulation aspects are explored using RSoft to determine the thermal impact on waveguide refractive indices. The simulation results are converted to PDK format for integration into OptSIM to observe phase changes under different temperature conditions and arm lengths of the Mach-Zehnder structure, confirming the phase shifts through changes in light intensity.
In the third part, five structural configurations are explored to analyze the passive and actively modulated characteristics of single Mach-Zehnder structures with equal and unequal arm lengths, and ring-coupled Mach-Zehnder configurations. The design of two types of thermal switches is simulated to confirm the relationships between heater placements, waveguide heights, and refractive indices across different materials. Using varying arm lengths, the activation and deactivation of resonance peaks in the all-pass filter are simulated to verify the thermal modulation effectiveness of the Mach-Zehnder′s lower arm, focusing on optical communication wavelengths between 1540 nm and 1560 nm. The switch performance is demonstrated, and the photomask layout and process compatibility are optimized by reducing the structural area and analyzing different bending radii in waveguides through FullWAVE FDTD simulations.
The fourth part details the sample fabrication process and measurement setup, including the equipment used and the methods for fitting the data. Passive and active measurements of ring-coupled equal and unequal arm length Mach-Zehnder structures are performed, followed by an analysis of the thermal switch structures based on sample measurements.
Finally, the fifth chapter evaluates the passive and modulated data from the study to confirm the modulation effects and discusses optimization improvements and tuning for optimal performance.
關鍵字(中) ★ 環形共振腔
★ 馬赫曾德爾干涉儀
★ 環耦合馬赫曾德爾干涉儀
★ 熱光效應
關鍵字(英) ★ Ring Resonators
★ Mach-Zehnder Interferometers
★ Ring Resonators Coupled with Mach-Zehnder Interferometers
★ Thermal-Optic Effect
論文目次 目錄
中文摘要 i
ABSTRACT iv
誌謝 vii
目錄 viii
圖目錄 xii
表目錄 xix
第一章 緒論 1
1-1 研究背景 1
1-1-1 環形共振腔Micro Ring Resonator 5
1-1-2 馬赫曾德爾干涉儀Mach Zehnder Interferometer 5
1-1-3 熱光效應Thermal-Optic Effect 6
1-1-4 漸逝波Evanescent Wave 7
1-2 模擬軟體介紹 8
1-2-1 有限時域差分法(Finite Difference Time Domain) 8
1-2-2 有限元素法(Finite Element Method) 10
1-2-3 Synopsys RSoft FemSIM 12
1-2-4 Synopsys RSoft FullWAVE 15
1-2-5 Synopsys OptSIM 16
第二章 基本特性與原理 17
2-1 環形共振腔原理(Ring Resonator) 18
2-1-1 All Pass Ring 19
2-1-2 Add Drop Pass Ring 22
2-1-3 耦合條件 23
2-1-4 環形共振腔腔共振條件 24
2-1-5 自由頻譜範圍(Free Spectral Range) 24
2-1-6 半峰全寬(Full Width at Half Maximum) 25
2-1-7 精緻值(Finesse) 26
2-1-8 品質因子(Quality Factor) 26
2-2 馬赫曾德爾干涉儀 (Mach-Zehnder Interferometer) 28
2-2-1 馬赫曾德爾干涉儀結構推導 29
2-2-2 自由頻譜範圍(Free Spectral Range) 31
2-2-3 馬赫曾德爾干涉儀擬合思路 32
2-3 環耦合馬赫曾德爾干涉儀(Ring assisted Mach-Zehnder Interferometer) 34
2-3-1 馬赫曾德爾干涉儀結構對於環形共振腔之光功率影響 35
2-4 熱光效應原理(Thermal-Optic Effect) 37
2-4-1 MATLAB Thermal-Optic Effect模擬 38
2-4-2 RSoft Thermal-Optic Effect模擬 39
2-4-3 Thermal-Optic Effect 模擬結論 43
2-5 模擬原理驗證 44
2-5-1 MATLAB環形共振腔模擬 44
2-5-2 OptSIM Circuit全通環形共振腔模擬 46
2-5-3 MATLAB馬赫曾德爾干涉儀結構模擬 47
2-5-4 OptSIM Circuit馬赫曾德爾干涉儀結構模擬 48
2-5-5 MATLAB環耦合馬赫曾德爾干涉儀模擬 49
2-5-6 OptSIM Circuit環耦合馬赫曾德爾干涉儀模擬 50
2-5-7 模擬數據結論 51
第三章 環耦合馬赫曾德爾干涉儀結構之應用設計 52
3-1 單一馬赫曾德爾干涉儀等臂長於光強度與相位影響 53
3-2 環耦合馬赫曾德爾干涉儀等臂長光強度與相位影響 55
3-3 環耦合馬赫曾德爾干涉儀不等臂長光強度與相位影響 56
3-4 單一馬赫曾德爾干涉儀不等臂長強度與相位影響 57
3-5 環耦合馬赫曾德爾干涉儀架構一 59
3-6 環耦合不等臂長馬赫曾德爾干涉儀架構二 63
3-7 彎曲波導分析 68
3-8 K-Layout軟體介紹與設計說明 70
第四章 製程簡介及量測與數據分析 73
4-1 介紹製程 74
4-1-1 元件製程 74
4-1-2 加熱器製程 76
4-2 介紹元件量測與調製結構 78
4-2-1 被動量測架構 78
4-2-2 直流調製架構 80
4-3 測量與調製環耦合等臂長馬赫曾德爾干涉儀 81
4-3-1 穿透頻譜量測 82
4-3-2 直流調製量測 84
4-4 測量與調製環耦合不等臂長馬赫曾德爾干涉儀 87
4-4-1 穿透頻譜量測 88
4-4-2 直流調製量測 89
4-5 測量與調製單一不等臂長馬赫曾德爾干涉儀 94
4-5-1 穿透頻譜量測 94
4-5-2 直流調製量測 95
4-6 測量與調製環耦合馬赫曾德爾干涉儀架構一 97
4-6-1 穿透頻譜量測 97
4-6-2 直流調製量測 99
4-7 測量與調製環耦合馬赫曾德爾干涉儀架構二 102
4-7-1 穿透頻譜量測 102
4-7-2 直流調製量測 104
第五章 結論與未來展望 108
參考文獻 110
附錄一 113
附錄二 114
附錄三 115
附錄四 116
附錄五 117
參考文獻 參考文獻
[1] P. Muñoz et al., "Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications," Sensors, vol. 17, no. 9, p. 2088, 2017.
[2] Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, "Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications," Advanced Materials Technologies, vol. 5, no. 8, p. 1901153, 2020.
[3] S. Tang et al., "Tunable microwave photonic filter based on silicon nitride MZI-assist micro-ring resonator," in 2019 Asia Communications and Photonics Conference (ACP), 2019: IEEE, pp. 1-3.
[4] A. Singh, R. Belansky, and M. Soltani, "Ultraflat bandpass high extinction silicon photonic filters," in 2020 Conference on Lasers and Electro-Optics (CLEO), 2020: IEEE, pp. 1-2.
[5] A. Gutierrez et al., "Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance," Journal of lightwave technology, vol. 30, no. 1, pp. 9-14, 2012.
[6] A. Mistry, M. Hammood, H. Shoman, L. Chrostowski, and N. A. Jaeger, "Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers," Optics letters, vol. 43, no. 24, pp. 6041-6044, 2018.
[7] P. Absil, J. Hryniewicz, B. Little, R. Wilson, L. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technology Letters, vol. 12, no. 4, pp. 398-400, 2000.
[8] H.-W. Chen, Y.-h. Kuo, and J. E. Bowers, "High speed silicon modulators," in 2009 14th OptoElectronics and Communications Conference, 2009: IEEE, pp. 1-2.
[9] B. De Oliveira, W. Daniel, and A. Herbster, "Multimode photonic biosensor based on cascaded ring resonator with Mach-Zehnder interferometer for Vernier-Effect refractive index sensing," in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 2019: IEEE, pp. 1-5.
[10] H. Yonglin, L. Jie, M. Xiurong, K. Guiyun, Y. Shuzhong, and D. Xiaoyi, "High extinction ratio Mach–Zehnder interferometer filter and implementation of single-channel optical switch," Optics communications, vol. 222, no. 1-6, pp. 191-195, 2003.
[11] Synopsys, Photonics Solutions FullWAVE FDTD User Guide, 2021.
[12] Synopsys. "FemSIM Product Overview." https://www.synopsys.com/photonic-solutions/RSoft-photonic-device-tools/passive-device-femsim.html
[13] Synopsys. "Electro-Optic Co-Simulation of Photonic Integrated Circuits and Fiber-Optic Systems." https://www.synopsys.com/content/dam/synopsys/photonic-solutions/pdf/optsim-datasheet.pdf
[14] S. Pathak, "Chapter 7 - Photonics Integrated Circuits," in Nanoelectronics, B. K. Kaushik Ed.: Elsevier, 2019, pp. 219-270.
[15] G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. Wiley, 2004.
[16] G. Antonacci, K. Elsayad, and D. Polli, "On-Chip Notch Filter on a Silicon Nitride Ring Resonator for Brillouin Spectroscopy," ACS Photonics, vol. 9, no. 3, pp. 772-777, 2022/03/16 2022, doi: 10.1021/acsphotonics.2c00005.
[17] H. Yi, D. Citrin, Y. Chen, and Z. Zhou, "Dual-microring-resonator interference sensor," Applied Physics Letters, vol. 95, pp. 191112-191112, 12/01 2009, doi: 10.1063/1.3263726.
[18] S. Manipatruni, K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Opt. Express, vol. 18, no. 17, pp. 18235-18242, 2010/08/16 2010, doi: 10.1364/OE.18.018235.
[19] J. Gosciniak et al., "Thermo-optic control of dielectric-loaded plasmonic waveguide components," Opt. Express, vol. 18, no. 2, pp. 1207-1216, 2010/01/18 2010, doi: 10.1364/OE.18.001207.
[20] N. Klimov, M. Souza, and Z. Ahmed, "Thermal Control of Transmission Spectral Characteristics in a Ring Resonator," 01/12 2018.
[21] X. Ji, S. Roberts, M. Corato-Zanarella, and M. Lipson, "Methods to achieve ultra-high quality factor silicon nitride resonators," APL Photonics, vol. 6, no. 7, 2021, doi: 10.1063/5.0057881.
[22] R. J. P. Menéndez, "Fiber-Optic Ring Resonator Interferometer," Interferometry - Recent Developments and Contemporary Applications, 2018.
[23] D. G. Rabus, "Integrated ring resonators," 2007.
[24] J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator," Opt. Express, vol. 16, no. 12, pp. 8359-8365, 2008/06/09 2008, doi: 10.1364/OE.16.008359.
[25] S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express, vol. 15, no. 17, pp. 10553-10561, 2007.
[26] J. Richter, M. P. Nezhad, and J. Witzens, "Ultra-high-Q inverted silica microtoroid resonators monolithically integrated into a silicon photonics platform," Lehrstuhl für Integrierte Photonik, 2019.
[27] H. Oulachgar, L. Chrostowski, and R. Bojko, "Silicon Photonics Design, Fabrication and Data Analysis," 2015.
[28] H. Oulachgar, L. Chrostowski, and R. Bojko, Silicon Photonics Design, Fabrication and Data Analysis. 2015.
[29] J. Yang, F. Wang, X. Jiang, H. Qu, M. Wang, and Y. Wang, "Influence of loss on linearity of microring-assisted Mach-Zehnder modulator," Opt. Express, vol. 12, no. 18, pp. 4178-4188, 2004.
[30] R. Nandi et al., "Study of Ring-Assisted Mach-Zehnder Interferometer Modulators," in 2022 IEEE International Conference on Emerging Electronics (ICEE), 2022: IEEE, pp. 1-4.
[31] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, "Adiabatic thermo-optic Mach–Zehnder switch," Optics letters, vol. 38, no. 5, pp. 733-735, 2013.
[32] A. Densmore et al., "Compact and low power thermo-optic switch using folded silicon waveguides," Opt. Express, vol. 17, no. 13, pp. 10457-10465, 2009.
[33] K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, "Review and perspective on ultrafast wavelength‐size electro‐optic modulators," Laser & Photonics Reviews, vol. 9, no. 2, pp. 172-194, 2015.
[34] L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, "Low-power operation in a silicon switch based on an asymmetric Mach–Zehnder interferometer," IEEE Photonics Journal, vol. 7, no. 2, pp. 1-8, 2015.
[35] X. Wang et al., "Highly compact 1T-1R architecture (4F 2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation," in 2012 International Electron Devices Meeting, 2012: IEEE, pp. 20.6. 1-20.6. 4.
[36] D. Pérez et al., "Thermal tuners on a Silicon Nitride platform," arXiv preprint arXiv:1604.02958, 2016.
[37] C. Tan and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," Journal of Physics and Chemistry of Solids, vol. 61, no. 8, pp. 1315-1320, 2000.
[38] H. Sun, Q. Qiao, Q. Guan, and G. Zhou, "Silicon photonic phase shifters and their applications: A review," Micromachines, vol. 13, no. 9, p. 1509, 2022.
[39] C. Dhote, A. Singh, and S. Kumar, "Silicon photonics sensors for biophotonic applications—a review," IEEE Sensors Journal, vol. 22, no. 19, pp. 18228-18239, 2022.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2024-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明