參考文獻 |
1. World Health Organization, Ultraviolet radiation (Environmental Health Criteria 160, 1994).
2. S. K. Sastry, A. K. Datta, R. W. Worobo, “Ultraviolet light,” J. Food Sci. 65, 90–92 (2000).
3. A?. C. Giese, Ultraviolet radiation. in Encyclopedia of Physical Science and Technology. (McGraw-Hill, New York, 1992).
4. L. Urban, F. Charles, M. R. de Miranda, and J. Aarrouf, “Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest,” Plant Physiol. Biochem. 105, 1–11 (2016).
5. J. R. Bolton, and C. A. Cotton, The ultraviolet disinfection handbook. (American Water Works Association, 2011).
6. B. M. Andersen, H. Banrud, E. Boe, O. Bjordal, and F. Drangsholt, “Comparison of UV C light and chemicals for disinfection of surfaces in hospital isolation units,” Infect. Control Hosp. Epidemiol. 27, 729e734 (2006).
7. F. P. Wieringa, “Five Frequently Asked Questions About UV Safety.” IUVA News 8, 29–32 (2006).
8. V. C. Forte, “Understanding ultraviolet LED applications and precautions,” Electron. Compon. News Mag. (2014).
9. T. Koutchma, Ultraviolet LED Technology for Food Applications: From Farms to Kitchens (Academic Press, Canada, 2019).
10. W. Kowalski, UV Surface Disinfection Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection (Springer Berlin Heidelberg, Berlin, 2009).
11. S. E. Beck, H. Ryu, L. A. Boczek, J. L. Cashdollar, K. M. Jeanis, J. S. Rosenblum, R. L. Oliver, and G. L. Karl, “Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy,” Water Res. 109, 207-216 (2017).
12. Liteon company website, https://optoelectronics.liteon.com/en-global/Led/led-component/Detail/1117?param4=18?m5=222.
13. T. Nicolau, N. Gomes Filho, J. Padrao, and A. Zille, “A comprehensive analysis of the UVC LEDs’ applications and decontamination capability,” Materials 15, 2854 (2022).
14. T. Koutchma, Ultraviolet light in food technology: Principles and applications, 2nd ed. (CRC Press, 2009).
15. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
16. WHO, “Fruit and Vegetables for Health: Report of a Joint FAO/WHO Workshop, 1–3 September 2004, Kobe, Japan,” World Health Organization and Food and Agriculture Organization of the UN (2004).
17. C. W. Wardlaw, Banana diseases including plantains and abaca, 1st ed. (Longman, William Clowns & Sons Limited, London, 1961).
18. J. W. Eckert, and I. L. Eaks, Postharvest disorders and diseases of citrus fruits. in The Citrus Industry, vol. 5 (University of California Press, Berkeley, CA, USA, 1989).
19. R. C. Ploetz, Diseases of mango. in Diseases of Tropical Fruit Crops (CAB International, Wallingford, 2003).
20. Morning Ag Clips website, https://www.morningagclips.com/a-path-to-defeating-crop-killing-gray-mold-without-toxic-chemicals/
21. W. F. Wilcox, and R. C. Seem, “Relationship between strawberry gray mold incidence, environmental variables, and fungicide applications during different periods of the fruiting season,” Phytopathology 84, 264?270 (1994).
22. L. R. Beuchat, “Surface decontamination of fruits and vegetables eaten raw: A review,” World Health Organization (1998).
23. B. Yaun, S. Sumner, J. Eifert, J. Marcy, “Inhibition of pathogens on fresh produce by ultraviolet energy,” Int. J. Food Microbiol. 90, 1?8 (2004).
24. C. N. Berger, S. V. Sodha, R. K. Shaw, P. M. Griffin, D. Pink, P. Hand, and G. Frankel, “Fresh fruit and vegetables as vehicles for the transmission of human pathogens,” Environ. Microbiol. 12, 2385?2397 (2010).
25. D. Martinez-Romero, G. Bailen, M. Serrano, F. Guillen, J. M. Valverde, P. Zapata, S. Castillo, and D. Valero, “Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review,” Crit. Rev. Food Sci. Nutr. 47, 543?560 (2007).
26. A. Spadoni, F. Neri, and M. Mari, Physical and chemical control of postharvest diseases. in Advances in Postharvest Fruit and Vegetable Technology (CRC Press, 2016).
27. J. W. Eckert, and J. M. Ogawa, “The chemical control of postharvest diseases: subtropical and tropical fruits,” Annu. Rev. Phytopathol. 23, 421–454 (1985).
28. M. Sisquella, P. Picouet, I. Vinas, N. Teixido, J. Segarra, J. Usall, “Improvement of microwave treatment with immersion of fruit in water to control brown rot in stone fruit,” Innov. Food Sci. Emerg. Technol. 26, 168–175 (2014).
29. A. K. Thompson, R. K. Prange, R. Bancroft, T. Puttongsiri, Controlled Atmosphere Storage of Fruits and Vegetables (CABI, 2018).
30. A. K. Thompson, Fruit and vegetable storage: hypobaric, hyperbaric and controlled atmosphere (Springer, 2015).
31. E. Fallik, “Prestorage hot water treatments (immersion: rinsing and brushing),” Postharvest Biol. Technol. 32, 125–134 (2004).
32. S. Ben-Yehoshua, R. Porat, Heat treatments to reduce decay. In Environmentally Friendly Technologies for Agricultural Produce Quality (CRC Press, Boca Raton, 2005).
33. J. Usall, A. Ippolito, M. Sisquella, F. Neri, “Physical treatments to control postharvest diseases of fresh fruits and vegetables,” Postharvest Biol. Technol. 122, 30-40 (2016)
34. D. K. Liu, C. C. Xu, C. X. Guo, X. X. Zhang, “Sub-zero temperature preservation of fruits and vegetables,” A review. J. Food Eng. 275, 109881 (2020).
35. R. Barkai-Golan, Postharvest Diseases of Fruits and Vegetables: Development and Control (Elsevier, 2001).
36. P. M. Nair, A. Sharma, “Food Irradiation,” Innov. Food Process. Technol. 19–29 (2016).
37. B. Pathak, P. K. Omre, B. Bisht, and D. Saini, “Effect of thermal and non-thermal processing methods on food allergens,” Progressive Res. Int. 13, 314–319 (2018).
38. B. Bisht, P. Bhatnagar, P. Gururani, V. Kumar, M. S. Tomar, R. Sinhmar, N. Rathi, and S. Kumar, “Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review,” Trends Food Sci. Technol. 114, 372?385 (2021).
39. R. R. Kalaiselvan, A. Sugumar, and M. Radhakrishnan, Gamma irradiation usage in fruit juice extraction. in Fruit juices (Academic Press, 2018).
40. J. Farkas, “Irradiation for better foods,” Trends Food Sci. Tech., 17, 148?152 (2006).
41. C. Liao, X. Liu, A. Gao, A. Zhao, J. Hu, and B. Li, “Maintaining postharvest qualities of three leaf vegetables to enhance their shelf lives by multiple ultraviolet-C treatment,” LWT 73, 1?5 (2016).
42. M. Morales-de la Pena, J. Welti-Chanes, and O. Martin-Belloso, “Novel technologies to improve food safety and quality,” Curr. Opin. Food Sci. 30, 1–7 (2019).
43. C. Jermann, T. Koutchma, E. Margas, C. Leadley, and V. Ros-Polski, Mapping trends in novel and emerging food processing technologies around the world,” Innov. Food Sci. Emerg. Technol. 31, 14–27 (2015).
44. M. Turtoi, “Ultraviolet light treatment of fresh fruits and vegetables surface: A review,” J. Agroaliment. Processes Technol. 19, 325–337 (2013).
45. G. A Gonzalez-Aguilar, C. Y. Wang, J. G. Buta, and D. T. Krizek, “Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe “Tommy Atkins” mangoes,” Int. J. Food Sci. Technol. 36, 767–773 (2001).
46. D. Terao, J. S. de Carvalho Campos, E. A. Benato, and J. M. Hashimoto, “Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-C irradiation,” Food Eng. Rev. 7, 171–175 (2015).
47. C. Stevens, C. L. Wilson, J. Y. Lu, V. A. Khan, E. Chalutz, S. Droby, M. K. Kabwe, Z. Haung, O. Adeyeye, L. P. Pusey, M. E. Wisniewski, and M. West, “Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits,” Crop Prot. 15, 129–134 (1996).
48. M. A. Pombo, H. G. Rosli, G. A. Martinez, and P. M. Civello, “UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria ananassa, Duch.),” Postharvest Biol. Technol. 59, 94–102 (2011).
49. G. A. Gonzalez-Aguilar, J. A. Villa-Rodriguez, J. F. Ayala-Zavala, and E. M. Yahia, “Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments,” Trends Food Sci. Technol. 21, 475–482 (2010).
50. W. Janisiewicz, F. Takeda, B. Evans, and M. Camp, “Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens,” Crop Prot. 150, 105791 (2021).
51. O. Phonyiam, H. Ohara, S. Kondo, M. Naradisorn, and S. Setha,“Postharvest UV-C Irradiation Influenced Cellular Structure, Jasmonic Acid Accumulation, and Resistance Against Green Mold Decay in Satsuma Mandarin Fruit (Citrus unshiu),” Front. Sustain. Food Syst. 5, 684434 (2021).
52. G. D’hallewin, M. Schirra, E. Manueddu, A. Piga, S. Ben-Yehoshua, “Scoparone and Scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date,” J. Am. Soc. Hortic. Sci. 124, 702–707 (1999).
53. L. K. Sari, S. Setha, and M. Naradisorn, “Effect of UV-C irradiation on postharvest quality of ‘Phulae’pineapple,” Sci. Hortic. 213, 314?320 (2016).
54. J. Yao, W. Chen, and K. Fan, “Recent advances in light irradiation for improving the preservation of fruits and vegetables: A review,” Food Biosci. 103206 (2023).
55. M. Darre, A. R. Vicente, L. Cisneros-Zevallos, and F. Artes-Hernandez, “Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth,” Foods 11, 653 (2022).
56. A. M. Rauth, “The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light,” Biophys. J. 5, 257–273 (1965).
57. K. Oguma, H. Katayama, and S. Ohgaki, “Photoreactivation of Escherichia coli After Lowor Medium-Pressure UV Disinfection Determined by an Endonuclease Sensitive Site Assay,” Appl. Environ. Microbiol. 68, 6029–6035 (2002).
58. M. A. Pombo, M. C. Dotto, G. A. Martinez, and P. M. Civello, “UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest,” Biol. Technol. 51, 141–148 (2009).
59. F. Nigro, A. Ippolito, V. Lattanzio, and M. Salerno, “Effect of ultraviolet-C light on postharvest decay of strawberry,” J. Plant Pathol. 82, 29–37 (2000).
60. K. Sheng, S. S. Shui, L. Yan, C. Liu, and L. Zheng, “Effect of postharvest UV-B or UV-C irradiation on phenolic compounds and their transcription of phenolic biosynthetic genes of table grapes,” J. Food Sci. Technol. 55, 3292–3302 (2018).
61. R. H. Haitz, M. G. Craford, and R. H. Weissman, Light emitting diodes. in Handbook of optics 2nd ed. (McGraw Hill, New York, 1995).
62. H. Ehrenreich, and F. Spaepen, Solid state physics (Academic Press, San Diego, CA, U.S.A., 2001).
63. N. Shuji, M. Takashi, and S. Masayuki, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 30, L1998 (1991).
64. R. H. Bishop, The Mechatronics Handbook-2 Volume Set (CRC Press, Boca Raton, FL, U.S.A., 2002).
65. J. Chen, S. Loeb, and J. H. Kim, “LED revolution: fundamentals and prospects for UV disinfection applications,” Environ. Sci. Water Res. Technol. 3, 188?202 (2017).
66. E. F. Schubert, T. Gessmann, and J. K. Kim, Light Emitting Diodes (Wiley, 2005).
67. M. Schiler, Simplified design of building lighting (John Wiley & Sons, New York, U.S.A., 1997).
68. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53, 100209 (2014).
69. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353–355 (1986).
70. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112 (1989).
71. H. Amano, T. Asahi, and I. Akasaki, “Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer,” Jpn. J. Appl. Phys. 29, L205 (1990).
72. S. Srivastava, S. M. Hwang, M. Islam, K. Balakrishnan, V. Adivarahan, and A. Khan, “Ohmic contact to high-aluminum-content AlGaN epilayers,” J. Electron. Mater. 38, 2348?2352 (2009).
73. R. France, T. Xu, P. Chen, R. Chandrasekaran, and T. D. Moustakas, “Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition,” Appl. Phys. Lett. 90, 062115 (2007).
74. R. E. Nahory, M. A. Pollack, E. D. Beebe, and J. C. DeWinter, “Efficient GaAs1? xSbx/AlyGa1? yAs1? xSbx double heterostructure LED′s in the 1?μm wavelength region,” Appl. Phys. Lett. 27, 356–357 (1975).
75. P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt and J. Schneider, “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Mater. Sci. Eng. B 59, 390–394 (1999).
76. T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth 189, 778–781 (1998).
77. C. A. Tran, A. Osinski, R. F. Karlicek, and I. Berishev, “Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 75, 1494–1496 (1999).
78. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
79. J. J. Xu, Y. F. Wu, S. Keller, S. Heikman, B. J. Thibeault, U. K. Mishra, and R. A. York, “1-8-GHz GaN-based power amplifier using flip-chip bonding,” IEEE Microw. Guided Wave Lett. 9, 277–279 (1999).
80. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O′Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379–3381 (2001).
81. A. Ryer, The Light Measurement Handbook (International Light Technologies, 1997).
82. J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV Radiation and the Skin,” Int. J. Mol. Sci. 14, 12222?12248 (2013).
83. F. J. van Kuijk, “Effects of Ultraviolet Light on the Eye: Role of Protective Glasses,” Environ. Health Perspect. 96, 177?184 (1991).
84. Ultraviolet Radiation Guide, Technical Manual NEHC-TM92-5 (Bureau of Medicine and Surgery, Navy Environmental Health Center, 1992).
85. M. Raeiszadeh, and B. Adeli, “A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations,” ACS Photonics 7, 2941?2951 (2020).
86. IEC 62471, Photobiological safety of lamps and lamp systems (IEC Geneva, 2006).
87. CNS 15592, 光源及光源系統之光生物安全性 (經濟部標準檢驗,2012).
88. M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, Advanced topics in source modeling. in Modeling and Characterization of Light Sources (SPIE, 2002).
89. H. Zerhau-Dreihoefer, U. Haack, T. Weber, and D. Wendt, Light source modeling for automotive lighting devices. in Modeling and Characterization of Light Sources (SPIE, 2002).
90. T. T. N. Le, S. K. Lin, C. C. Sun, Q. K. Nguyen, C. S. Wu, T. H. Yang, and Y. W. Yu, “Precise mid-field modeling for UVC LEDs by using a fluorescent film,” OSA Contin. 4, 3117–28 (2021).
91. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193?2195 (2006).
92. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918?13927 (2009).
93. ASAP Program, Breault Research Organization (BRO), Inc., /http://www.bro.com/S.
94. J. P. Lewis, “Fast template matching,” Proc. Canad. Imag. Proc. 19, 120–123 (1995).
95. C. C. Sun, Y. C. Lo, C. C. Tsai, X. H. Lee, and W. T. Chien, “Anti-glare LED projection lamp based on an optical design with a confocal double-reflector,” Opt. Commun. 285, 4207?4210 (2012).
96. H. J. Lin, C. C. Sun, C. S. Wu, X. H. Lee, T. H. Yang, S. K. Lin, Y. J. Lin, and Y. W. Yu, “Design of a Bicycle Head Lamp Using an Atypical White Light-Emitting Diode with Separate Dies,” Cryst. 9, 659 (2019).
97. C. S. Wu, K. Y. Chen, X. H. Lee, S. K. Lin, C. C. Sun, J. Y. Cai, T. H. Yang, and Y. W. Yu, “Design of an LED Spot Light System with a Projection Distance of 10 km,” Cryst. 9, 524 (2019).
98. K. Barnard, Color constancy with fluorescent surfaces. in Color and Imaging Conference (Society of Imaging Science and Technology, 1999)
99. B. Valeur, and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (John Wiley & Sons, 2012).
100. T. Treibitz, Z. Murez, B. G. Mitchell, and D. Kriegman, Shape from fluorescence. in European Conference on Computer Vision (Springer, 2012).
101. Fluorescent Film website, https://hsdtc.com/fluorescent-film/
102. J. C. Robinson, Crop Production Science in Horticulture (5): Bananas & Plantains CAB International (Cambridge University Press, Walling Ford, UK, 1996).
103. P. Jeffries, J. C. Dodd, M. J. Jeger, and R. A. Plumbley, “The biology and control of Colletotrichum species on tropical fruit crops,” Plant Pathol. 39, 343–366 (1990).
104. T. T. N. Le, C. T. Liao, S. K. Lin, C. S. Wu, Q. K. Nguyen, T. H. Yang, Y. W. Yu, and C. C. Sun, “Study of banana preservation extension by UVC radiation in precise monitoring LED irradiation cavity,” Sci. Rep. 12, 21352 (2022).
105. H. W. Lee and B. S. Lin, “Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array,” Opt. Express 20, 788-98 (2012).
106. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
107. B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
108. T. H. Yang, H. Y. Huang, C. C. Sun, B. Glorieux, X. H. Lee, Y. W. Yu, and T. Y. Chung, “Noncontact and Instant Detection of Phosphor Temperature in Phosphor-Converted White LEDs,” Sci. Rep. 8, 296 (2018).
109. N. T. Mohamed, P. Ding, J. Kadir, and H. M. Ghazali, “Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening,” Food Sci. Nutr. 5, 967–80 (2017).
110. D. M. De Costa, and H. M. D. M. Gunawardhana, “Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana,” Postharvest Biol. Technol. 68, 54–63 (2012).
111. S. I. Harlapur, M. S. Kulkarni, M. C. Wali, and H. Srikantkulkarni, “Evaluation of Plant Extracts, Bio-agents and Fungicides against Exserohilum turcicum (Pass.) Leonard and Suggs. Causing Turcicum Leaf Blight of Maize,” Karnataka J. Agric. Sci. 20, 541–544 (2007).
112. T. Tanaka, “Misunderstanding with Regards Citrus Classification and Nomeclature,” Bull. Univ. Osaka Pref. Ser. B Agric. Biol. 21, 139?145 (1969).
113. P. Putnik, F. J. Barba, J. M. Lorenzo, D. Gabri?, A. Shpigelman, G. Cravotto, and D. Bursa? Kova?evi?, “An Integrated Approach to Mandarin Processing: Food Safety and Nutritional Quality, Consumer Preference, and Nutrient Bioaccessibility,” Compr. Rev. Food Sci. Food Saf. 16, 1345?1358 (2017).
114. L. W. Timmer, S. M. Garnsey, and J. H. Graham, Compendium of Citrus Diseases (The American Phytopathological Society, Minnesota, 2000).
115. C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Light. 1, 1?17 (2014).
116. J. E. Amadi, M. O. Adebola, and C. S. Eze, “Isolation and identification of a bacterial blotch organism from watermelon (Citrullis lanatus (Thunb.) Matsum. And Nakai),” Afr. J. Agr. Res. 4, 1291–1294 (2009).
117. Z. S. Safari, P. Ding, J. J. Nakasha, and S. F. Yusoff, “Combining chitosan and vanillin to retain postharvest quality of tomato fruit during ambient temperature storage,” Coatings 10, 1222 (2020).
118. A. A. Bakar, M. N. A. Izzati, and Y. Kalsom, “Diversity of Fusarium species associated with postharvest fruit rot disease of tomato,” Sains Malays. 42, 911–920 (2013).
119. D. Yadav, S. P. Singh, “Mango: History origin and distribution,” J. Pharmacogn. Phytochem. 6, 1257–1262 (2017).
120. FAO, Major Tropical Fruits Market Review, Preliminary results 2023, Rome (2024).
121. R. C. Ploetz, Diseases of Tropical Fruit Crops. in Diseases of mango (CAB International, Wallingford, 2003).
122. N. F. Rosman, N. A. Asli, S. Abdullah, and M. Rusop, Some common disease in mango. in AIP conference proceedings (AIP 2019).
123. S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427?1437 (2001).
124. M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, Advanced Topics in Source Modeling. in Modeling and Characterization of Light Sources (SPIE, 2002).
125. Z. D. Ting, and T. C. McGill Jr, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545?3553 (1995).
126. A. Borbely, and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
127. A. Doicu, and T. Wriedt, “Equivalent refractive index of a sphere with multiple spherical inclusions,” J. Opt. A-Pure Appl. Opt. 3, 204 (2001).
128. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270?3274 (1996).
129. C. F. Boren, and D. R. Huffmarn, Absorption and scattering of Light by Small Particles (John Wiley & Sons, 1983).
130. T. T. N. Le, C. S. Wu, N. J. Cheng, T. H. Yang, Y. W. Yu, and C. C. Sun, “Can UVC radiation be useful in prolonging the shelf life of mangoes?” Smart Agric. Technol. 9, 100612 (2024).
131. P. S. Wharton, and J. Dieguez-Uribeondo, “The biology of Colletotrichum acutatum,” Anales Jard. Bot. Madrid 61, (2004).
132. Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett. 23, 552?554 (2011).
133. H. C. van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957).
134. R. N. Tharanathan, H. M. Yashoda, and T. N. Prabha, “Mango (Mangifera indica L.), “The king of fruits” –An overview,” Food Rev. Int. 22, 95–123 (2006).
135. M. Daimon, and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
136. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
137. C. E. Alupoaei, J. A. Olivares, and L. H. Garc??a-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893–903 (2004). |