博碩士論文 109322024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.222.109.133
姓名 陳亮逸(Liang-Yi Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 SD 690 大號數鋼筋混凝土梁受高週次疲勞行為
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 本研究主要探討 SD690 大號數鋼筋受疲勞反覆荷載下,其疲勞行為與先前計畫[20、21、22]是否有所差異,對於疲勞壽命 S-N 曲線得到直徑效應因子,提出適合高強度鋼筋疲勞預測公式,並以實驗過程量測混凝土應變、中點撓度、裂縫進行疲勞行為之探討。
從先前計畫中[22]已得知SD690 鋼筋對於大號數鋼筋的直徑效應較為明顯,故研究規劃採用更大號數 SD690-D36 鋼筋來驗證直徑效應之影響,
並對於疲勞極限(fr,limit)、鋼筋有效節端曲率半徑及節高(r/hr)值提供參考建議,並對於混凝土受反覆荷載下的 EcIe 值變化進行探討。得出本研究主要結論如下:
(1) 探討出SD690 大號數鋼筋之直徑因子,並根據Helgason[1]式(2-2)進行修正後提出高強度鋼筋疲勞預測公式(5-2b)。
(2) 根據研究數據進行 125 萬週次疲勞極限(fr,limit)的分析,對於SD690-D25鋼筋的疲勞極限為 200MPa,而更大號數鋼筋因直徑效應影響,使疲勞極限有所降低,如D32 鋼筋的疲勞極限為 158MPa;D36 鋼筋的疲勞極限為140MPa。
(3) 鋼筋竹節形狀(r/hr)在 SD690-D25 螺紋節鋼筋之r/hr 值建議大於 1.3,大號數鋼筋因直徑效應將導致疲勞壽命較短,故建議更大號數使用較大r/hr,如D32 鋼筋建議採用 1.4 以上 r/hr 值;D36 鋼筋建議採用 1.5 以上r/hr 值。
(4) 混凝土受反覆荷載下 EcIe 值會隨循環週次增加而有所折減,受高週次循環荷載梁在第一次循環下 EcIe 值與理論 Ec,thIg 比值為0.17,在經過高週次循環(180 萬週次)後 EcIe 值為0.13Ec,thIg,為第一次循環的 79%。
摘要(英) This study mainly discusses whether the fatigue behavior of SD690 large-size steel bar under repeated fatigue load is different from that of the previous study [20, 21, 22]. For the diameter effect factor obtained from the fatigue life S-N curve, a fatigue prediction formula suitable for high-strength steel bar is proposed, and the fatigue behavior is discussed by measuring the concrete strain, midpoint deflection and crack in the experimental process.
From the previous study [22], it has been known that the diameter effect of SD690 reinforcement on large-size SD690-D36 steel bar is obvious. Therefore, it is planned to use larger-size steel bar to verify the impact of diameter effect,provide reference suggestions on fatigue limit (fr, limit), effective radius of curvature at the end of steel bar and lug height (r/hr), and discuss the change of
EcIe value under repeated load.
The main conclusions of this study are:
(1) The diameter factor of SD690 large steel bar is discussed, and the fatigue prediction formula of high strength steel bar (5-2b) is proposed after modification according to Helgason[1] (2-2).
(2) According to the analysis on the fatigue limit (fr, limit) for the 1.25 million cycles, the fatigue limit of the SD690-D25 steel bar is 200MPa, and the fatigue limit of the larger size steel bar is reduced due to the influence of the diameter effect. For example, the fatigue limit of the D32 steel bar is 158MPa; the fatigue limit of D36 steel bar is 140MPa.
(3) The r/hr value of rebar with deformed joint shape (r/hr) in SD690-D25 threaded joint reinforcement is recommended to be greater than 1.3, and the fatigue life of large rebar will be shorter due to diameter effect, so it is recommended to use a larger r/hr for larger rebar. For example, the r/hr value of more than 1.4 is recommended for D32 reinforcement; It is recommended to adopt r/hr value above 1.5 for D36 reinforcement.
(4) The EcIe value of concrete under repeated load will decrease with the increase of cycles. The ratio of EcIe value to theoretical Ec,thIg of the beam under high cycle load is 0.17 at the first cycle. The EcIe value after the high cycles (1.8 million cycles) was 0.13Ec,thIg, which was 79% of EcIe value for the first cycle.
關鍵字(中) ★ 鋼筋混凝土梁
★ SD690大號數鋼筋
★ 疲勞試驗
★ 高強度鋼筋疲勞預測公式
★ 疲勞極限
★ 混凝土EcIe 值
關鍵字(英)
論文目次 摘要 ..................................................................................................................................... i
Abstract ............................................................................................................................. iii
誌謝 .................................................................................................................................... v
目錄 ................................................................................................................................... vi
表目錄 ................................................................................................................................ x
圖目錄 .............................................................................................................................. xii
符號說明 ......................................................................................................................... xvi
第一章 緒論 ...................................................................................................................... 1
1.1 研究動機 .................................................................................................................... 1

1.2 研究目的及方法 ........................................................................................................ 1
第二章 文獻回顧 .............................................................................................................. 3
2.1 公路橋梁設計規範[3] ............................................................................................... 3

2.2 有關鋼筋疲勞研究 .................................................................................................... 4

2.2.1 Collins[5]和 Helgason[1]對於鋼筋疲勞行為及特性研究 ........................... 4

2.3 影響鋼筋疲勞的因素 ................................................................................................ 6

2.3.1 應力差幅(fr) ................................................................................................... 6

2.3.2 最小應力(fs,min) .............................................................................................. 6

2.3.3 鋼筋表面的形狀 ........................................................................................... 7

2.3.4 鋼筋直徑(db) ................................................................................................. 8

2.3.5 鋼筋等級強度(fy) ....................................................................................... 11

2.3.6 鋼筋的微觀結構 ......................................................................................... 11

2.3.7 焊接鋼筋的影響 ......................................................................................... 12

2.4 鋼筋的應力集中影響研究 ...................................................................................... 12

2.4.1 Jhamb 和 MacGregor[16]的應力集中係數研究 ....................................... 12

2.4.2 Zheng 和 Abel[7]的鋼筋應力集中係數研究 ............................................. 13

2.5 高強度混凝土特性之研究 ...................................................................................... 13

2.5.1 高強度混凝土材料的基本性質 ................................................................. 14

2.6 混凝土的疲勞行為相關研究 .................................................................................. 14

2.6.1 影響混凝土的疲勞行為之因素 ................................................................. 15

2.6.2 混凝土疲勞行為增加的應變 ..................................................................... 15

2.6.3 混凝土疲勞行為的勁度衰減 ..................................................................... 16

2.7 鋼筋疲勞試驗方式 .................................................................................................. 17
第三章 試體規劃與實驗步驟 ........................................................................................ 18
3.1 試體規劃 .................................................................................................................. 18

3.2 試體設計 .................................................................................................................. 18

3.3 試體製作 .................................................................................................................. 19

3.3.1 T-head 錨定 ................................................................................................... 19

3.3.2 黏貼應變計 ................................................................................................. 20

3.3.3 鋼筋籠綁紮 ................................................................................................. 20

3.3.4 模板組立 ..................................................................................................... 21

3.3.5 預埋螺栓 ..................................................................................................... 22

3.3.6 試體灌漿 ..................................................................................................... 22

3.3.7 試體養護與拆模 ......................................................................................... 23

3.3.8 試體架設 ..................................................................................................... 23

3.4 實驗設備 .................................................................................................................. 24

3.4.1 加壓系統 ..................................................................................................... 24

3.4.2 量測系統 ..................................................................................................... 25

3.5 實驗方法與步驟 ...................................................................................................... 26

3.6 實驗數據處理 .......................................................................................................... 27

3.6.1 疲勞循環荷重位移歷時 ............................................................................. 27

3.6.2 混凝土表面應變 ......................................................................................... 28

3.6.3 裂縫擴展及寬度 ......................................................................................... 28
第四章 實驗結果 ............................................................................................................ 29
4.1 材料試驗結果 .......................................................................................................... 29

4.1.1 混凝土抗壓試驗 ......................................................................................... 30

4.1.2 鋼筋抗拉試驗 ............................................................................................. 31

4.1.3 鋼筋彎曲試驗 ............................................................................................. 31

4.1.4 量測鋼筋竹節形狀(r/hr) ............................................................................. 31

4.2 靜載重試驗結果與觀察 .......................................................................................... 32

4.3 各試體疲勞試驗觀察 .............................................................................................. 34

4.3.1 試體 D35HFL1(fr=0.505fya) ........................................................................ 34

4.3.2 試體 D35HFL2(fr=0.440fya) ........................................................................ 37

4.3.3 試體 D35HFL3(fr=0.347fya) ........................................................................ 40

4.3.4 試體 D35HFL4(fr=0.277fya) ........................................................................ 42

4.3.5 試體 D35HFL5(fr=0.223fya) ........................................................................ 45

4.4 疲勞裂紋面積 .......................................................................................................... 48

4.5 梁混凝土表面裂縫擴展 .......................................................................................... 49
第五章 討論 .................................................................................................................... 50
5.1 高強度鋼筋混凝土梁高週次疲勞之修正 S-N 曲線經驗公式 ............................. 50

5.2 高強度鋼筋混凝土梁高週次疲勞極限 fr,limit 之討論 ............................................ 53

5.3 RC 梁受反覆荷載之應變及 EcIe 之變化 ................................................................. 55

5.4 鋼筋竹節節端曲率半徑與節高比值(r/hr)對 S-N 曲線影響 ................................. 57
6 第六章 結論與建議 .................................................................................................... 59
6.1 結論 .......................................................................................................................... 59

6.2 建議 .......................................................................................................................... 60
參考文獻 .......................................................................................................................... 61
附錄 A-標稱載重計算 .................................................................................................. 169
附錄 B-降伏載重計算 ................................................................................................... 173
附錄 C-量測 r/hr 值方式及結果 .................................................................................... 175
參考文獻 [1]T. Helgason, J. M. Hanson, N. F. Somes, W. G. Corley, and E. Hongnestad, Fatigue Strength of High Yield Reinforcing Bars, National Cooperative Highway Research Program (NCHRP) Report 164, Transportation Research Board, National Research Council, Washington, D.C., 1976.
[2]中華民國結構工程學會、中華民國地震工程學會、國家地震工程研究中心,高強度鋼筋混凝土結構設計手冊,初版,中華民國結構工程學會,臺北市,2017年12月。
[3]交通技術標準規範公路類公路工程部,公路橋梁設計規範,初版,交通部,臺北市,2009年12月。
[4]ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary Building Code Requirements for Structural Concrete, ACI 318-19, American Concrete Institute, 2019.
[5]M. P. Collins, and D. Mitchell, Prestressed Concrete Structures, Prentice-Hall, New Jersey, 1991.
[6]G.P. TILLY, “Fatigue of Steel Reinforcement Bars in Concrete: A Review, ” Fatigue & Fracture of Engineering Materials, V.2, pp.251-268, Octobar 1979.
[7]H. Zheng, and A. Abel, “Stress Concentration and Fatigue of Profiled Reinforcing Steels,” International Journal of Fatigue, V.20, pp.767-773, November 1998.
[8]J. Fei, and D. Darwin, Fatigue of High Relative Rib Area Reinforcing Bars, University of Kansas Center for Research, July 1999.
[9]W. M. Ghannoum, and Chase M. Slavin, “Low-Cycle Fatigue Performance of High-Strength Steel Reinforcing Bars,” ACI Materials Journal, V. 113, NO. 6 pp. 803-814, November-December 2016.
[10]J. G. MacGregor, I. C. Jhamb, and N. Nuttall, “Fatigue Strength of Hot Rolled Deformed Reinforcing Bars,” ACI Journal Proceedings, V.68, pp.169-179, March 1971.
[11]Nyamu, and D. Maringa, “Fatigue in High Strength Reinforcement Bars: An Overview,” Innovative Systems Design and Engineering, Vol.7, No.5, 2016.
[12]G. P. Tilly, “Fatigue Testing and Performance of Steel Reinforcement Bars,” Materials and Construction, V.17, pp.43-49, January 1984.
[13]H. Zheng and A. A. Abel, “Fatigue Properties of Reinforcing Steel Produced by Tempcore Process,” Journal of Materials in Civil Engineering, Vol.11, pp. 158-165, 1999.
[14]S. Maropoulos, A. Maropoulos, and A. Antonatos, “Fatigue Testing of Reinforced-Concrete Steel Bars,” IOP Conference Series Materials Science and Engineering, V.161, September 2016.
[15]A. Soltan, K. A. Harries, B. M. Shahrooz, H. G. Russell, and R. A. Miller, “Fatigue Performance of High-Strength Reinforcing Steel,” Journal of Bridge Engineering, V.17, pp.454-461, May/June 2012.
[16]J. G. MacGregor, and I. C. Jhamb, “Stress Concentrations Caused by Reinforcing Bar Deformations,” ACI Structural Journal, Vol. 41, pp. 169-182, January 1974.
[17]A. H. Nilson, “Properties and Performance of High-Strength Concrete,” IABSE Reports, Vol. 55, pp. 389-394, 1987.
[18]B. Mu, K. V. Subramaniam, and S. P. Shah, “Failure Mechanism of Concrete under Fatigue Compressive Load,” Journal of Materials in Civil Engineering, V.16, pp.566-572, November-December 2004.
[19]Nadja Oneschkow, “Fatigue Behaviour of High-Strength Concrete with Respect to Strain and Stiffness,” International Journal of Fatigue, V.87, pp. 38–49, June 2016.
[20]王勇智,鍾偉倫,葉子鉦,「鋼筋混凝土梁疲勞行為之初步研究」,第14屆結構工程研討會暨第4屆地震工程研討會,台中市,2018年11月。
[21]王勇智,葉子鉦,洪世峰,「鋼筋混凝土梁疲勞損傷之研究」,台灣混凝土學會2019年會暨混凝土工程研討會,台北市,2019年11月。
[22]王勇智,張瑞宏,洪世峰,范家豪,陳亮逸,「鋼筋混凝土梁疲勞行為之研究」,台灣混凝土學會2021年混凝土工程研討會,高雄市,2021年11月。
指導教授 王勇智 審核日期 2022-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明