博碩士論文 109322043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.144.3.43
姓名 簡宛瑩(Wan-Ying Chien)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用連續及非連續隨機場分析地層與參數變異性對液化潛能指數不確定性的影響
(Effect of stratigraphic model uncertainty at a given site on its liquefaction potential index: comparing two random field approaches)
相關論文
★ 建立砂性土的SPT-CPT關係式之新方法★ 探討新增鑽孔位置與地層不確定性之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨機場是一種能考慮空間變異性的分析方法,基於不同理論其隨機生成的結果也不盡相同。然而鮮少文章探討不同隨機場對地層模型建立的差異及對工程分析的影響。本文針對一潛在液化場址,根據其圓錐貫入試驗結果,分別利用連續隨機場(條件隨機場,簡稱CRF)及非連續隨機場(馬可夫隨機場,簡稱MRF)建立一系列可能的地層模型,並利用信息熵(information entropy, H)量化地層的不確定性。繼之,本文將CRF及MRF生成一系列的地質剖面,在同時考量地層土壤參數(反覆阻抗比)的不確定性後,分別進行液化潛能指數(LPI)的計算,並統計地層中LPI的平均值及變異係數。最後,量化地層不確定性與LPI不確定性之關係。研究結果顯示:(1)地層模型的生成直接受隨機方法影響,MRF模擬之地層分布較CRF模擬之地層分布連續;(2)受第(1)的影響,CRF模擬得地層不確定性較均勻,而MRF的則較不均勻;(3)利用CRF得到的信息熵及LPI不確定性較不具有相關性,而利用MRF得到的信息熵及LPI不確定性則具有正相關性。
摘要(英) A random field is an approach that can represent the spatial variability of soil property. The geological models generated by different random field approaches may yield different results. However, this topic has been seldom discussed. This paper selected two common methods, the covariance matrix decomposition, and the Markov chain Monte-Carlo, as the continuous random field and the discontinuous random field approaches, respectively. The former is referred to as the conditional random field (CRF) and the latter is referred to as the Markov random field (MRF) herein. This paper collected the CPT data on a liquefaction potential site, then calculated the soil behavior type index (Ic) for each borehole. A series of potential geological models then could be generated by each random field approach. This paper introduced the information entropy to quantify the geological model uncertainty. The mean and coefficient of variation of the LPI map could be obtained by analyzing the liquefaction potential with the geological model uncertainty consideration. Finally, the correlation between the geological model uncertainty and the LPI uncertainty could be quantified. The results show that: (1) The geological model generation is mainly affected by random approaches, the stratigraphic configuration simulated by the MRF is more continuous than that simulated by the CRF; (2) The trends of the information entropy map obtained by the MRF and the CRF are similar; however, the spatial variation of information entropy obtained by the CRF is more uniform than that by the MRF; (3) There is an obvious correlation between the information entropy and the LPI uncertainty obtained by the MRF, however, which doesn′t appear in the CRF simulations.
關鍵字(中) ★ 液化潛能指數
★ 條件隨機場
★ 馬可夫隨機場
★ 地層模型不確定性
★ 信息熵
關鍵字(英) ★ liquefaction potential index
★ conditional random field
★ Markov random field
★ geological model uncertainty
★ information entropy
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 IX
符號表 X
第一章、 緒論 1
1.1 前言 1
1.2 研究目的 3
1.3 研究架構 3
第二章、 文獻回顧 5
2.1 現地液化評估 5
2.2 液化潛能指數 9
2.3 地質模型與其不確定性 10
2.4 信息熵 17
2.5 隨機場 20
2.5.1 條件隨機場 20
2.5.2 馬可夫隨機場 24
第三章、 研究方法 29
3.1 研究流程 29
3.2 研究場址 30
3.3 研究場址鑽孔資料分析 32
3.4.1 條件隨機場 35
3.4.2 馬可夫隨機場 39
3.5 場址地質模型不確定性量化 42
3.6 研究場址液化潛能指數分布 42
第四章、 結果與討論 47
4.1地層模型之差異 47
4.2 地質模型不確定性之比較 49
4.3 液化潛能指數之比較 52
4.4 地層模型不確定性與LPI不確定性之關係 56
第五章、 結論與建議 65
5.1 結論 65
5.2 建議 67
參考文獻 69
參考文獻 1. 董家鈞,2013,「知之為知之,不知為不知,是知也:淺談地質模型不確定性」,大地技師期刊刊,第20期,第72–83頁。
2. Andrus, R.D., Stokoe, K.H., II., 1997. Liquefaction resistance based on shear wave velocity. In: Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 89–128, Report No. NCEER-97-0022. National Center for Earthquake Engineering Research, Buffalo.
3. Andrus, R.D., Stokoe, K.H., II., 2000. Liquefaction resistance of soil from shear wave velocity. J. Geotech. Geoenviron. Eng. ASCE 126 (11), 1015–1025.
4. Boulanger, R., Idriss, I., 2007. Evaluation of cyclic softening in silts and clays. J. Geotech. Geoenviron. Eng. 133 (6), 641–652.
5. Burland, J.B., 1987. Nash lecture: the teaching of soil mechanics—a personal view. Groundwater Effects in Geotechnical Engineering, Vol 3. Proceedings of 9th European Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam/Boston, pp. 1427-1441.
6. Cetin, K.O., Seed, R.B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L.F., Kayen, R.E., Moss, R.E., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 130 (12), 1314–1340.
7. Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3rd Edition. Wiley, New York.
8. Gong, W., Luo, Z., Juang, C.H., Huang, H., Zhang, J., Wang, L., 2014. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays. Comput. Geotech. 56, 69–79.
9. Gong, W., Juang, C.H., Martin II, J.R., Tang, H., Wang, Q., Huang, H., 2018. Probabilistic analysis of tunnel longitudinal performance based upon conditional random field simulation of soil properties. Tunn. Undergr. Space Technol. 73, 1–14.
10. Gong, W., Tang, H., Wang, H., Wang, X., Juang, C.H., 2019. Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty. Engineering Geology. 259, 105162.
11. Gong, W., Zhao, C., Juang, C.H., Tang, H., Wang, H., Hu, X., 2020. Stratigraphic uncertainty modeling with random field approach. Comput. Geotech. 125, 103681.
12. Gong, W., Zhao, C., Juang, C.H., Zhang, Y., Tang, H., Lu, Y.C., 2021. Coupled characterization of stratigraphic and geo-properties uncertainties – A conditional random field approach. Engineering Geology. 294 (5), 106348.
13. Hsu, Y.H., Lu, Y.C., Khoshnevisan, S., Juang, C.H., Hwang, J.H., 2022. Effect of geological uncertainties on the design of offshore wind turbine foundations. Engineering Geology. (Under review)
14. Idriss, I., Boulanger, R., 2010. SPT-Based Liquefaction Triggering Procedures, Report No. UCD/CGM-10/02. Department of Civil and Environmental Engineering, University of California, Davis, CA, p. 259.
15. Iwasaki, T., Arakawa, T., Tokida, K., 1984. Simplified Procedures for Assessing Soil Liquefaction During Earthquakes. Soil Dyn. Earthq. Eng. 3 (1), 49–58.
16. Juang, C.H., Ge, Y., Zhang, J., 2019a. Geological Uncertainty: A Missing Element in Geotechnical Reliability Analysis. The Sixth Wilson Tang Lecture, In: Proceedings of the 7th International Symposium on Geotechnical Safety and Risk, pp. 1–12.
17. Juang, C.H., Zhang, J., Shen, M.F., Hu, J.Z., 2019b. Probabilistic methods for unified treatment of geotechnical and geological uncertainties in geotechnical analysis. Eng. Geol. 249, 148–161.
18. Keaton, J.R., 2013. Engineering geology: Fundamental input or random variable?. In: Proc. Geo-Congress March 3–7 2013. San Diego, California, USA, pp. 232–253.
19. Keaton, J.R., 2015. A Suggested Geologic Model Complexity Rating System. In: Engineering Geology for Society and Territory-Vol. 6, Springer, Cham.
20. Li, S. Z., 2009. Markov random field modeling in image analysis. Springer, London.
21. Li, Z., Wang, X., Wang, H., Liang, R.Y., 2016. Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field. Eng. Geol. 201, 106–122.
22. Liu, M., Breuel, T., Kautz, J., 2017. Unsupervised Image-to-Image Translation Networks, 31. Conference on Neural Information Processing Systems.
23. Lu, Y.C., Liu, L.W., Khoshnevisan, S., Ku, C.S., Juang, C.H., and Xiao, S., 2022. A new approach to constructing SPT-CPT correlation for sandy soils. Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards. (under review)
24. Mann, C.J., 1993. Uncertainty in Geology, In J.C. Davis and U.C. Herzfeld, (eds), Computers in Geology-25 Years of Progress, Oxford University Press, New York, 241-254.
25. Ministry of Transportation and Communication R.O.C. 2018. Taiwan Highway Bridge Seismic Design Code. Ministry of Transportation and Communication R.O.C.
26. National Academy of Sciences, Engineering, and Medicine (NASEM), 2016. Earthquake-Induced Soil Liquefaction and Its Consequences. The National Academy Press, Washington, DC.
27. Robertson, P.K., 1990. Soil classification using the cone penetration test. Can. Geotech. J. 27(1), 151–158.
28. Robertson, P.K., Wride, C.E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geotech. J. 35 (3), 442–459.
29. Robertson, P.K., 2009. Performance-based earthquake design using the CPT. In: Proceedings of the international conference on performance-based design in earthquake geotechnical engineering, pp. 15–18.
30. Sandersen, P.B.E., 2008. Uncertainty assessment of geological models--A qualitative approach, IAHS Publications-Series of Proceedings and Reports, No. 320, 345-349.
31. Shannon, C.E., 1948. A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379–423, 623–656.
32. Shen, M., Juang, C.H., Ku, C.S., Khoshnevisan, S., 2019. Assessing effect of dynamic compaction on liquefaction potential using statistical methods – a case study. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 13 (4), 341–348.
33. Seed, H.B., Idriss, I.M., 1971. Simplified procedure for evaluation soil liquefaction potential. J. Soil Mech. Found. Div. ASCE Vol. 107 (SM9), 1249–1274.
34. Seed, H.B., Idriss, I.M., 1982. Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute Monograph.
35. Wang, C., Chen, Q., Juang, C.H., 2017. Regional Liquefaction Mapping Accounting for Multiscale Spatial Variability of Soil Parameters with Geological Constraints. Geo-Risk 2017: Reliability-Based Design and Code Developments. Denver, Colorado, USA.
36. Wellmann, J.F., Horowitz, F.G., Schill, E., Regenauer-Lieb, K., 2010. Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics 490 (3–4), 141–151.
37. Wellmann, J.F., Regenauer-Lieb, K., 2012. Uncertainties have a meaning: information entropy as a quality measure for 3-D geological models. Tectonophysics 526–529, 207–216.
38. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dorby, R., Finn, W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe II, K.H., 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. 127 (10), 817–833.
39. Youd, T.L., Noble, S.K., 1997. Liquefaction criteria based statistical and probabilistic analysis. In: Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 201–216, Report No. NCEER-97-0022. State University of New York, Buffalo, NY.
40. Zhang, Y., Ma, W., Amin, M. G., 2001. Subspace analysis of spatial time-frequency distribution matrices. IEEE Trans. Signal Process. 49 (4), 747–759.
41. Zhao, C., Gong, W., Li, T., Juang, C.H., Tang, H., Wang, H., 2021. Probabilistic characterization of subsurface stratigraphic configuration with modified random field approach. Eng. Geol. 288, 106138.
指導教授 莊長賢 盧育辰(Charng-Hsein Juang Yu-Chen Lu) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明