博碩士論文 109322076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.226.34.25
姓名 張騏璿(Chi-Hsuan Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 預鑄廠內部成本評估暨污染排放影子價格估計與碳權交易
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 營建業當前所面臨的困境為傳統施工品質日益受到考驗和缺工問題,伴隨著科技發展和少子化的趨勢下,預鑄工法能逐漸成為傳統場鑄的替選方案。預鑄混凝土的領域分類大致可分為隧道環片、預鑄混凝土帷幕牆、體育館看台、結構預鑄樑、柱和樓板。預鑄工法有效解決勞動力不足問題,甚至在不受氣候影響,解決嚴冬或炙熱無法施工情況。預鑄工法強調以工業化手段提升建築品質,採用同步工程策略,達到快速興建的目的,減少能耗和降低環境噪音汙染。
我國預鑄產業中,結構預鑄主要以「潤弘精密股份有限公司」和「亞利預鑄工業股份有限公司」。預鑄混凝土工廠的生產營運會產生「內部成本」與「外部成本」。與前者相關之營收利潤能夠透過上市公司公開的財務年報得知,準確地檢視某公司營運狀況,為某公司永續經營重要的指標。至於後者,則泛指對於社會或者其他個人部門造成的影響與衝擊。電力為工廠營運主要的消耗能源,電力之生產所造成的溫室氣體排放,包含氮氧化物、二氧化碳,是影響全球暖化的重要因素,二氧化硫是形成酸雨的原因,發電過程中排放的懸浮顆粒,為嚴重導致呼吸道症候群的主因。綜上所述,本研究除探討預鑄混凝土工廠本身的「內部成本」項目外,尚考量預鑄成品在生產過程中電力需求所造成的「外部成本」。提供預鑄混凝土工廠電力消耗所造成的外部成本的影子價格估計、預鑄施工建築的節能減碳之貨幣化效益評估。
節能減碳為現在世界經濟發展的趨勢,在固定額度碳權配給下,衡量受評單位(DMU)的地區之間或時空維度之間的碳權就可以進行交易,使得碳排放成本內部化整體經濟發展可以達到最大的效益,並兼顧使用者付費之社會正義,但如何在碳交易與經濟成長之間的互動,是一項主要議題,目前用來探討碳權交易機制的模型主要有三種:無碳權交易模型(NT)、空間碳權交易模型(ST)與時空碳權交易模型(STT)。此外,現有DMU之運作方式是否偏離最優DMU的產出的方向(或稱之為最優產出一致性),是以cosine的函數予以表示,其併同麥式指標之效率變動,即效率改善程度,可以衡量DMU績效,可找出DMU在生產過程的缺失,並且進行改善,即最優產出一致性vs.效率改善。本研究採用meta-DEA的模型進行求解邊際生產力,並窮舉不同權重組合找出最優產出,再計算餘弦函數獲得一致性指標。至於效率改善是指前後兩年度的效率比例。
本研究針對以上兩個重要議題收集22個縣市之電量度數、勞工人數、財政支出之三項投入資料以及總體收入、二氧化碳排放之兩項產出資料,利用資料包絡分析方法(DEA),進行台灣22個縣市的效率分析。針對第一個議題,本研究建構DEA的NT、ST與STT三個模型,將22個縣市分配至增加碳權額度(百分比)vs.意欲產出之成長(百分比)的四個象限。結果指出在NT模型之下,多數農業縣市能獲得大幅的效率提升。在ST模型與STT模型中,台南市,在提升平均總體收入之下,可以增加碳權額度為最多且於市場中進行交易的地區。彰化縣,為在提升平均總體收入之下,可以增加碳權額度為最少且於市場中進行交易的地區。再經由數學規劃的角度,量測碳權交易模型的影子價格。
至於第二個主題,本研究依舊以台灣22個縣市為分析對象,所獲得結果可以形成最優產出一致性vs.效率改善的四個象限。分別為「領導者」、「聚焦最優產出一致性」、「落後者」與「聚焦效率改善」,各個DMU可以按照自己被分派的位置,訂定出未來改善的方向。
摘要(英) The problem that the construction industry is facing is that the construction quality of engineering projects using traditional construction method is being questioned. Moreover, labor shortage problem is severe. With the development of science and technology and the trend of lower birthrate, the precast concrete method is gradually taking over the cast-in-place method, hoping to solve the labor shortage problem. Furthermore, the precast method can minimize the weather influence and this can help solve the problem of not being able to perform construction due to extreme cold and hot conditions. The precast method can improve the building quality through industrialized means. It adopts a “synchronized engineering strategy” to reach the goal of rapid construction and reduce energy consumption along with noise pollution at the same time. The main engineering project of precast concrete includes tunnel linings, precast concrete curtain walls, stadium stands, structural beams and columns and floor slabs.
The two largest companies in the precast concrete field in Taiwan are Runhorn Pretech Engineering Co., Ltd and Ya Li Precast Prestressed Concrete Industries Corp. The production and operation of a precast concrete company generates “internal cost” and “external cost”. Profit and revenue related to internal cost can be learned from a listed company’s public accounting and financial statements. The accounting and financial statements allow us to learn a company’s operating conditions in a precise sense. As for external cost, it generally means the negative effect and impact caused on society and other private sectors. Electricity is the main energy consumption for factory operation. Greenhouse gas emissions, including nitrogen oxides and carbon dioxide, produced during electricity production are an important factor that causes global warming. Sulfur dioxide is the main cause of acid rain. What’s worse, the particulate matter emitted during electricity power generation is the main root of severe respiratory syndrome. Therefore, in addition to discussing the "internal cost" of a precast concrete plant itself, this study takes the "external cost" of electricity demand generated during the manufacturing process of precast products into consideration. The study shades light on the shadow price estimation of external costs caused by electricity consumption in the concrete plant; moreover, the study discusses the monetization benefit assessment of energy conservation and carbon reduction in the precast engineering process.
Energy conservation and carbon reduction are the trend of economic development all over the world. Under the assignment for regulated quota of carbon rights, we can participate in carbon trading activity regarding spatial regions or temporal interval in order to maximize the level of whole economic development and implement social justice of user charge. However, how to foster interaction between carbon trading and economic growth is the crucial issue. There are 3 carbon trading models involved in this study such as NT model, ST model and STT model. Moreover, the operational situation of DMU’s throughput direction also defined as throughput optimization consistency is taken into consideration. With the efficiency change of Malmquist productivity index (MPI), we can measure DMU’s performance and find out the shortages to make improvement on efficiency. It’s known as “throughput optimization consistency vs. efficiency change”. This study adopts meta-DEA model to figure out marginal productivity and find out optimal throughput under different weights which is assigned. We can use the law of cosine to calculate throughput optimization consistency. Taking a look at efficiency change which is known as efficiency ratio crossing 2 years.
Under the two issues mentioned above, this study is based on 22 counties and cities in Taiwan. We take electricity consumption, labor number and fiscal expenditure as input data. Then, we collect output data of gross income and carbon dioxide. Through data envelopment analysis (DEA), we implement the efficiency analysis of 22 counties and cities in Taiwan. As for the first issue, this study establishes NT model, ST model and STT model, which are regarding DEA model. We can establish four quadrants of “increasing carbon rights (%) vs. benchmarking ratio of increasing desirable output (%)” for 22 counties and cities evaluation. The result shows that lots of agricultural counties and cities can obtain great efficiency improvements through NT model. Taking a look into ST model and STT model, we find that Tainan City acquires the most increasing carbon rights with the increase of the average gross income. Changhua County acquires the lowest increasing carbon rights under the increase of the average gross income. Finally, we use Mathematical Programming to calculate the shadow price of carbon trading models.
In terms of the second issue, this study still takes 22 counties and cities in Taiwan as DMU. We propose the two-dimensional chart divided into 4 quadrants and established by “throughput optimization consistency vs. efficiency change”. The 4 quadrants are divided into "Leader", "Throughput optimization consistency focus", "Laggard" and “Efficiency focus ". All DMUs can formulate improvement on direction when they are assigned to specific position.
關鍵字(中) ★ 預鑄混凝土工廠
★ 節能減碳
★ 外部成本之影子價格
★ 碳權交易
★ 最優產出的一致性與效率變化
關鍵字(英) ★ Precast concrete plant
★ energy conservation and carbon reduction
★ shadow price for external cost
★ carbon trading
★ throughput optimization consistency and efficiency change
論文目次 Table of Contents
中文摘要 i
Abstract iii
誌 謝 vi
Table of Contents vii
List of Figures x
List of Tables xiii
1 Current challenges of the construction industry and overall development trends of the country 1
2 Internal cost of the precast concrete plant 5
2.1 Literature review on internal cost analysis 5
2.2 Revenue and profit of the company 7
2.3 Business plan evaluation of the company 10
3 Estimation for external cost of the precast concrete plant 12
3.1 Literature review of external cost estimation 12
3.2 Marginal productivity of undesired output 16
3.3 Efficiency frontier production model 18
3.3.1 Random error term 19
3.3.2 Deterministic error term 19
3.3.3 Composite error term 20
3.4 Estimation for the shadow price of undesired output 21
3.5 Data description for the marginal productivity of undesired output 24
3.6 Data analysis for the CNLS model 25
4 Carbon rights trading model and meta-DEA model 30
4.1 Literature review 30
4.1.1 Literature review on carbon rights trading 30
4.1.2 Literature review on throughput optimization 31
4.2 Carbon rights trading model 31
4.2.1 Non-carbon trading model 31
4.2.2 Spatial trading model 33
4.2.3 Spatial-temporal trading model 34
4.3 Meta-DEA model 35
4.3.1 Throughput optimization consistency 35
4.3.2 Efficiency change 36
5 Experiment result analysis 38
5.1 Collection of input data 38
5.2 Experiment of carbon rights trading model 38
5.2.1 Result analysis of carbon rights trading model 38
5.2.2 The shadow price of the carbon rights trading model 44
5.2.3 Sensitivity analysis of carbon rights trading model 44
5.3 Result analysis of meta-DEA model 46
6 Conclusion and future research 54
References 61
Appendix I Data of coal-fired power plant 64
Appendix II Directional marginal productivity and directional shadow price in 2016 ~ 2020 70
Appendix III Shadow price estimated by CNLS model in 2016 ~ 2020 100
Appendix IV Result of carbon rights trading model in 2016 ~ 2020 102
Appendix V Result of throughput optimization consistency and efficiency change in 2016 ~ 2020 107
參考文獻 [1] 台灣電力公司,2016年至2020年,105年至109年電業年報。
[2] 台灣電力公司,歷年平均單價, https://www.taipower.com.tw/upload/43/43_04/%E6%AD%B7%E5%B9%B4%E7%B5%B1%E8%A8%88/06-%E6%AD%B7%E5%B9%B4%E5%B9%B3%E5%9D%87%E9%9B%BB%E5%83%B9.pdf 。
[3] 吳延東,『藉由元資料包絡分析進行臺灣壽險產業的邊際生產力與效率分析』,國立台灣大學碩士論文,2022。
[4] 和平電力股份有限公司,2016年至2020年,105年度至109年度年報。
[5] 林佳瑩,『Estimating Directional Shadow Prices of Air Pollutant Emissions by Road Transportation Modes』,國立中央大學碩士論文,2018。
[6] 陳惠國,2022年,研究方法-基礎與進階,課程講義(待出版)。
[7] 麥寮汽電股份有限公司,2016年至2020年,105年度至109年度發電年報。
[8] 曾銘文,『中高層建築採預鑄系統工法成本結構之研究』,國立中央大學碩士論文,1997。
[9] 經濟部能源局,109年度電力排碳係數,https://www.moeaboe.gov.tw/ECW/populace/news/Board.aspx?kind=3&menu_id=57&news_id=20933。
[10] 潤弘精密工程事業股份有限公司,2016年至2021年,105年度至110年度合併財務報告暨會計師查核報告。
[11] 潤弘精密工程事業股份有限公司,2022年,碳中和利器-與傳統外牆等厚之預鑄夾芯隔熱外牆。
[12] Afriat, S. N. (1972). Efficiency estimation of production functions. International Economic Review, 13(3), 568-598.
[13] Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21-37.
[14] Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
[15] Boyd, G., Molburg, J., Prince, R. (1996). Alternative methods of marginal abatement cost estimation: Non-parametric distance function. Proceedings of the USA EE/IAEE 17th Conference, 86-95.
[16] Chen, H. K., Lin, Y. H., & Lee, C. Y. (2021). Convex nonparametric least squares and stochastic semi-nonparametric frontier to estimate the shadow prices of PM2.5 and NOx for Taiwan’s transportation modes. International Journal of Sustainable Transportation, 15(9), 659-677.
[17] Dineshkumar, N., & Kathirvel, P. (2015). Comparative study on prefabrication construction with cast in-situ construction of residential buildings. International Journal of Innovative Science Engineering and Technology, 2(4), 527-532.
[18] Holla, B. R., Anant, S., Mohammad, M. A., Periwal, A., & Kapoor, A. (2016). Time , cost , productivity and quality analysis of precast concrete system. International Journal of Innovative Science, Engineering and Technology, 3(5), 252-257.
[19] Johnson, A., & Kuosmanen, T. (2014). An introduction to CNLS and StoNED methods for efficiency analysis: Economic insights and computational aspects. Benchmarking for Performance Evalutation, 117-186.
[20] Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19(2), 233-238.
[21] Lanke, A., & Dumpa, V. (2016). Design, cost & time analysis of precast & RCC building. International Research Journal of Engineering and Technology, 3(6), 343-350.
[22] Lee, C.Y. (2017). Directional marginal productivity: a foundation of meta-data envelopment analysis. Journal of the Operational Research Society, 68(5), 544-555.
[23] Lee, C.Y. (2018). Mixed-strategy Nash equilibrium in data envelopment analysis.
European Journal of Operational Research, 266(3), 1013-1024.
[24] Lee, C.Y., & Zhou, P. (2015). Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010. Energy Economics, 51(C), 493-502.
[25] Nurjaman, H. N., Hariandja, B. H., & Sidjabat, H. R. (2008). The use of precast concrete systems in the construction of low cost apartments in Indonesia. 14th World Conference of Earthquake Engineering, 1-2.
[26] Priya, P. K., & Neamitha, M. (2018). A review on precast concrete. International Research Journal of Engineering and Technology, 5(1), 967-971.
[27] Patel, R., & Sharma, N. (2016). Study of prefabrication in India. International Journal of Advanced Research in Engineering, Science and Management, 1-6.
[28] Podinovski, V. V., & Førsund, F. R. (2010). Differential characteristics of efficient frontiers in data envelopment analysis. Operations Research, 58(6), 1743-1754.
[29] Sivapriya, C., & Senthamilkumar, S. (2016). Building cost comparison of precast concrete construction with conventional construction. International Journal of Innovative Research in Science, Engineering and Technology, 5(5), 8037-8044.
[30] Tuner, J., (1995). Measuring the cost of pollution abatement in the US electric utility industry: A production frontier approach. Ph.D. Dissertation, University of North Carolina, Chapel Hill.
[31] Wang, K., Wei, Y. M., & Huang, Z. (2015). Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings. OMEGA, 63(C), 48-59.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明