博碩士論文 109322094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.118.140.79
姓名 林彥輝(Yen-Hui Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 台灣本地土壤液化數據庫之應用
相關論文
★ 由地震引起的房屋倒塌率與保險費率試算:以台灣為例★ 台灣累積絕對速度(CAV)地震危害度分析
★ 利用極值理論探討最大可能地震規模:以台灣為例★ 以台灣地震開發的新地動數據庫
★ 以離心模型試驗探討凹形邊坡之穩定性★ 影響土壤液化機率之不確定性分析和主要因素:以台灣中部為例
★ 根據切片法原理建立穩定數圖表進行邊坡穩定性分析★ 評估土壤液化最佳地動強度量值
★ 基於多個非本地經驗關係預測土壤剪力波速(Vs)下之新方法★ 考慮不同時間跨度下的台北土層液化機率
★ 以SPT-N結合Vs-N之經驗模型進行土壤液化評估★ 機率式地震危害度分析的解析解計算方法
★ 建立台灣CAVSTD-GMPE模型並應用於地震預警★ 土壤液化羅吉斯迴歸模型與台北及高雄的液化機率圖
★ 土壤液化評估法中之各參數的敏感度分析★ 五種土壤液化分析方法的假設統計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 自從Seed和Idriss成功在1971年發表「液化評估法」後,時至今日,已有眾多學者嘗試利用當地的土壤液化資料庫,建立多種不同的液化評估法,而本研究以SPT-N為基礎,進行液化評估法的相關研究。首先,本研究將使用CSR7.5與(N1)60,建立適用於台灣的羅吉斯迴歸模型,之後我們也將進行CSR7.5與(N1)60,cs散佈圖繪製,並以台灣的土壤液化數據為基礎,建立每位學者提出之液化評估法的混淆矩陣,再透過四種模型評估指標,比較各方法的差異。
本研究使用的液化評估法,參考Hwang et al. [1]提及的方法,其中包含:HBF法、B&I法、Cetin法、NCEER法、AIJ法與JRA法,而本研究所使用的數據,同樣是由Hwang et al. [1]提供,使用以SPT-N為基礎的土壤液化數據庫,作為數據來源,並以CSR7.5與(N1)60,cs的計算結果,建立不同方法的混淆矩陣,以利進行後續分析。
除此之外,由於我們也發現地震矩規模修正因子(Magnitude scaling factor, MSF)可能對液化評估法的計算結果,造成一定程度之影響,所以本研究也將透過文獻提供的509筆,來自於台灣的土壤液化數據,分別使用多位不同學者提出之MSF,替換HBF法中的MSF,並將計算結果各別建立混淆矩陣與模型評估指標,評估MSF的變化對液化評估法之影響大小。
最後,本研究將最佳化擁有MSF的液化評估法,以四種模型評估指標的最大值為最佳化目標,使用Excel Solver尋找各自方法之最佳化參數,以進行MSF的模型參數最佳化。
摘要(英) Since Seed and Idriss published the "Simplified Procedure" in 1971, numerous scholars have attempted to develop various simplified procedures using local soil liquefaction databases. In this study, simplified procedures based on SPT-N value will be used for the relevant research. Initially, this study will establish a logistic regression model in Taiwan using CSR7.5 and (N1)60, followed by the generation of scatter diagrams of CSR7.5 and (N1)60,cs. Subsequently, based on soil liquefaction data in Taiwan, the confusion matrix of the simplified procedures proposed by each scholar will be established, and the differences between the methods will be compared using four model validation indices.
The simplified procedures used in this study are provided by Hwang et al. [1], including the HBF method, B&I method, Cetin method, NCEER method, AIJ method, and JRA method. Furthermore, Hwang et al. [1] have provided the data used in this study based on the SPT-N value soil liquefaction database. After the calculation of CSR7.5 and (N1)60,cs, the confusion matrices of different methods will be established for subsequent analysis.
Additionally, we have found that the magnitude scaling factor (MSF) may impact the calculation results of the simplified procedure. Therefore, this study will use the 509 data provided by the literature from the soil liquefaction data in Taiwan to verify the MSF. The MSF proposed by different scholars will be used to replace the MSF in the HBF method. The confusion matrix and model validation index will be respectively established to evaluate the impact of the change of MSF on the simplified procedure.
Finally, this study will optimize the simplified procedures with the maximum value of the four model validation indices as the optimization goal. To achieve the objective, Excel Solver will be utilized to determine the optimal parameters of each method to optimize the model parameters of MSF.
關鍵字(中) ★ 土壤液化
★ 液化評估法
★ 混淆矩陣
★ 地震矩規模修正因子
關鍵字(英) ★ Soil liquefaction
★ Simplified procedure
★ Confusion matrix
★ Magnitude scaling factor
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 大地工程案例分析 3
2-2 數據來源 4
2-3 羅吉斯迴歸(Logistic Regression) 5
2-4 液化評估法(Simplified Procedure) 7
第三章 研究方法 16
3-1 羅吉斯迴歸模型 16
3-1-1 最大概似估計(Maximum Likelihood Estimation, MLE) 17
3-1-2 模型形式轉換 17
3-1-3 修正概似比指數(Modified Likelihood Ratio Index, ¯ρ^2) 18
3-2 液化評估法的評估方式 19
3-2-1 混淆矩陣(Confusion Matrix) 19
3-2-2 四種模型評估指標 20
3-3 液化評估法之計算結果 23
第四章 結果分析與討論 26
4-1 羅吉斯迴歸分析結果之比較 26
4-2 液化評估法計算結果之比較 27
4-2-1 建立混淆矩陣 28
4-2-2 模型評估指標之解釋與判讀 29
4-3 地震矩規模修正因子(MSF)對於液化評估法之影響 31
4-3-1 改變地震矩規模修正因子(MSF)之結果計算 33
4-3-2 建立混淆矩陣與模評估指標之解釋與判讀 33
4-3-3 探討MSF對液化評估法計算結果之影響範圍 36
4-4 最佳化液化評估法之MSF 38
4-4-1 最佳化MSF之計算結果解釋與判讀 38
4-4-2 最佳化模型參數與原模型參數之比較 40
第五章 結論與建議 63
5-1 結論 63
5-2 建議 64
參考文獻 65
參考文獻 [1] Hwang JH, Khoshnevisan S, Juang CH, Lu CC. Soil liquefaction potential evaluation – An update of the HBF method focusing on research and practice in Taiwan. Engineering geology 2021;280:105926.
[2] Kramer SL. Geotechnical earthquake engineering. New Jersey: Prentice Hall Inc., 1996.
[3] 楊志文,全機率土壤液化評估法之研究,國立中央大學,博士論文,桃園市,(2003)。
[4] Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE 1971;97(9):1249-1273.
[5] Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluation. Journal of Geotechnical Engineering, ASCE 1985;111(12):1425-1445.
[6] Liao SSC, Veneziano D, Whitman RV. Regression models for evaluating liquefaction probability. Journal of Geotechnical Engineering, ASCE 1988;114(4):389-411.
[7] Robertson PK. Soil classification using the cone penetration test. Canadian Geotechnical Journal 1990;27(1):151-158.
[8] Andrus RD, Stokoe II KH. Liquefaction resistance based on shear wave velocity. Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Center for Earthquake Engineering Research, State University of New York at Buffalo, 1997;89-128.
[9] Juang CH, Yang SH, Yuan H, Fang SY. Liquefaction in the Chi-Chi earthquake: effect of capping non-liquefiable layers. Soils and Foundations 2005;45(6):89-102.
[10] Ambraseys NN. Engineering seismology. Earthquake Engineering and Structural Dynamics 1988;17:1-105.
[11] Arango I. Magnitude scaling factors for soil liquefaction evaluations. Journal of Geotechnical Engineering, ASCE 1996;122(11):929-936.
[12] AIJ (Architectural Institute of Japan). Recommendations for the Design of Building Foundations. 2001. (in Japanese).
[13] Boulanger RW, Idriss IM. CPT and SPT Based Liquefaction Triggering Procedures. Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering. University of California, Davis, CA, 2014.
[14] Cetin KO, Seed RB, Kiureghian AD, Tokimatsu K, Harder Jr. LF, Kayen RE, Moss RES. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2004;130(12):1314-1340.
[15] JRA (Japan Road Association). Road Bridge Specifications: Part V Series of Earthquake-Proof Design. 1996. (in Japanese).
[16] Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder Jr LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson III WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe II KH. Liquefaction resistance of soils: summary report from the 1996 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2001;127(10):817-833.
[17] Wang JP, Lin YH. Application of Bayesian calculation to determine logic-tree weights for ground motion prediction equations: Seismological case studies in Taiwan. Engineering Geology 2021;294:106347.
[18] Hossain MB, Rahman MM, Haque MR. Empirical Correlation Between Shear Wave Velocity (VS) and Uncorrected Standard Penetration Resistance (SPT-N) for Dinajpur District, Bangladesh. Journal of Nature Science and Technology 2021;1(3):25-29.
[19] Irshad A, Waseem M, Abbas M, Ayub U. Evaluation of Share Wave Velocity Correlations and Development of New Correlation Using Cross-hole Data. International Journal of Geohazards and Environment 2015;1(1):42-51.
[20] Uma Maheswari R, Boominathan A, Dodagoudar GR. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotechnical and Geological Engineering 2010;28:119-137.
[21] Kirar B, Maheshwari BK, Muley P. Correlation Between Shear Wave Velocity (VS) and SPT Resistance (N) for Roorkee Region. International Journal of Geosynthetics and Ground Engineering 2016;2(9):1-11.
[22] Dikmen U. Statistical Correlations of Shear Wave Velocity and Penetration Resistance for soils. Journal of Geophysics and Engineering 2009;6:61-72.
[23] Hanumantharao C, Ramana GV. Dynamic Soil Properties for microzonation of Delhi, India. Journal of Earth System Science 2008;117:719-730.
[24] Hasancebi N, Ulusay R. Empirical Correlations Between Shear Wave Velocity and Penetration Resistance for Ground Shaking Assessments. Bulletin Engineering Geology and the Environment 2007;66:203-213.
[25] Idriss IM, Boulanger RW. SPT-Based Liquefaction Triggering Procedures. Report No. UCD/CGM-10/02. Department of Civil and Environmental Engineering, University of California, Davis, CA, 2010.
[26] Wu MH, Wang JP, Wu YJ, Chen, Z. Relationship between liquefaction potential index and liquefaction probability. Journal of GeoEngineering 2020;15(3):135-144.
[27] 陳順宇,迴歸分析,四版,三民書局,台北市,(2009)。
[28] Chang M, Maguire M, Sun Y. Stochastic Modeling of Bridge Deterioration Using Classification Tree and Logistic Regression. Journal of Infrastructure Systems, ASCE 2019;25(1):04018041.
[29] Lai SY, Chang WJ, Lin PS. Logistic regression model for evaluating soil liquefaction probability using CPT data. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2006;132(6):694-704.
[30] Geraghty D, and O’Mahony M. Urban Noise Analysis Using Multinomial Logistic Regression. Journal of Transportation Engineering, ASCE 2016;142(6): 04016020.
[31] Harb R, Radwan E, Yan X, Pande A, Abdel-Aty M. Freeway Work-Zone Crash Analysis and Risk Identification Using Multiple and Conditional Logistic Regression. Journal of Transportation Engineering, ASCE 2008;134(5):203-214.
[32] Wang Y. Ordinal Logistic Regression Model for Predicting AC Overlay Cracking. Journal of Performance of Constructed Facilities, ASCE 2013;27(3):346-353.
[33] Cheung SO, Yiu TW, Chan HW. Exploring the Potential for Predicting Project Dispute Resolution Satisfaction Using Logistic Regression. Journal of Construction Engineering and Management, ASCE 2010;136(5):508-517.
[34] Juang CH, Jiang T, Andrus RD. Assessing Probability-based Methods for Liquefaction Potential Evaluation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2002;128(7):580-589.
[35] Papathanassiou G. LPI-based approach for calibrating the severity of liquefaction-induced failures and for assessing the probability of liquefaction surface evidence. Engineering Geology 2008;96(1-2):94-104.
[36] Juang CH, Ching J, Luo Z, Ku CS. New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology 2012;133-134:85-93.
[37] Juang CH, Ching J, Luo Z. Assessing SPT-based probabilistic models for liquefaction potential evaluation: a 10-year update. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 2013;7(3):137-150.
[38] 內政部營建署,建築物耐震設計規範及解說,(2022)。
[39] Horowitz JL. Evaluation of usefulness of two standard goodness-of-fit indicators for comparing non-nested random utility models. Advances in Trip Generation, Transportation Research Record 874, Transportation Research Board, National Research Council, Washington, D.C., 1982;19-25.
[40] Chicco D, Tötsch N, Jurman G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Mining 2021;14(13):1–22.
[41] Maheswari BU, Sonia R, Rajakumar MP, Ramya J. Novel machine learning for human actions classification using histogram of oriented gradients and sparse representation. Information Technology and Control 2021;50(4):686-705.
[42] Remus JJ, Collins LM. The effects of noise on speech recognition in cochlear implant subjects: predictions and analysis using acoustic models. EURASIP Journal on Applied Signal Processing 2005;18:2979-2990.
[43] Sammut C, Webb GI. Encyclopedia of Machine Learning. Springer Science+Business Media, New York, 2010.
[44] Seed HB, Idriss IM. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute Monograph, Oakland, California, 1982.
[45] Wu MH, Wang JP, Chen IC. Optimization approach for determining rainfall duration-intensity thresholds for debris flow forecasting. Bulletin of Engineering Geology and the Environment 2019;78:2495–2501.
指導教授 王瑞斌(Jui-Pin Wang) 審核日期 2023-6-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明