博碩士論文 109322601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.225.55.42
姓名 尤伊揚(Andry Yuliyanto)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 臺灣應用沸石於溫拌瀝青混凝土之成效評估
(Evaluation of the Performance of Warm Mix Asphalt Concrete Using Zeolite in Taiwan)
相關論文
★ Engineering and Environmental Analysis of Maintenance Interval in Taiwan Freeway -the Case of Guanxi Section★ 3D 鋪面調查車之驗證與國道應用分析
★ 營建剩餘土石方物流監控及管理系統之建置★ 透水性鋪面保水與溫差成效之評估 -以中壢市龍慈路為例
★ 以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究★ 傳統單點雷射與2D雷射應用於平坦度之比較研究
★ 鋪面劣化影像自動辨識應用於鋪面巡查精進研究★ 自動化鋪面破壞影像辨識系統導入鋪面破壞維護管理系統之研究
★ 以ETC大數據結合FWD建立台灣區高速公路鋪面結構評估準則之研究★ The Comparison Study of Various Surface Maintenance Alternatives in Taiwan Freeway
★ The Preliminary Study of conducting Pavement Maintenance Model for Taiwan Provincial Highways using Life-Cycle Cost Analysis★ 冷拌再生瀝青混凝土應用於管線挖掘回填層之可行性研究
★ 台灣現行修補材料運用於柔性鋪面表層裂縫與坑洞修補之耐久性初步探討★ 以車載藍光雷射建構國道鋪面抗滑值與二維紋理之關聯模型
★ 以不同光譜雷射應用於鋪面平坦度量測之綜合性評估★ 冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 環境保護已成為交通運輸中日益重要的問題,尤其是瀝青製造產業。儘管熱拌瀝青混凝土 (HMA)仍然為廣泛應用,但目前溫拌瀝青混凝土 (WMA) 技術研究指出,採用沸石技術能夠有效的降低瀝青混合料的產製溫度。本研究目的為評估應用沸石的流變特性和成效試驗。應用沸石與瀝青 AC 20 混合後之質量損失率、發泡效果、黏度和動態剪切流變儀 (DSR) 進行評估; 另外,成效試驗評估應用之 WMA 和 HMA 皆由實驗室進行,包括壓實性能指數、抗水分敏感性和漢堡輪跡試驗 (HWTT)。實驗結果顯示應用沸石材料相較於採用一般的瀝青黏度與溫度方法,使用壓實性能指數作為決定WMA的拌和與壓實溫度較為適合。其中,Aspha-min 具有比其他沸石更好的壓實性能指數。然而,依據抗水分敏感性和 HWTT結果顯示,天然沸石優於其他沸石,其抗水分侵害殘餘指數 (TSR) 為91%,10,000 次的車轍深度為 7.03 mm。依據本研究對於經濟、能源和環境影響分析結果,沸石對於環境有效益的,沸石可用作一種有效且可持續的 WMA 添加劑。
摘要(英) Environmental protection is an increasing and essential issue in pavement engineering, especially asphalt concrete manufacturing. Hot Mix Asphalt (HMA) is widely used worldwide. However, Warm Mix Asphalt (WMA) technology can decrease asphalt mixtures production and laying temperature. Zeolite is a material that can be a warm mix additive because it can provide a foaming effect to increase workability. This study evaluates zeolite as a warm mix additive in rheological properties, mixing performance, economic, energy, and environmental impacts. Four different types of zeolites, Aspha-min, Zp-4a, Type A, and Natural are used in this study. The optimized content of zeolite was determined by using a mass loss test, the foaming effect, viscosity, and Dynamic Shear Rheometer (DSR) were conducted to evaluate the physical properties of the asphalt binder. The results showed that using 5% of zeolite as an additive has better workability and viscosity. To understand the performances of WMA with zeolites, compactability indices, moisture sensitivity, and the Hamburg Wheel Tracking Test (HWTT) were also conducted. Experimental findings have shown that the compactability index can better determine mixing and compaction temperatures than viscosity tests for zeolite material as a WMA additive. The results showed that Aspha-min has better compactability indices than other zeolites, and Natural zeolite has lower moisture sensitivity and HWTT. With a Tensile Strength Ratio (TSR) of 91% and rut depth at 10,000 passes is 7.03 mm. Moreover, economic, energy, and environmental impact analyses have shown that zeolites are environmentally efficient. Reducing 15 °C and 30 °C can reduce energy consumption and GHG emission by 5.49% and 10.97%, respectively. This study found that zeolite may be used as an effective and sustainable WMA additive.
關鍵字(中) ★ 沸石
★ 溫拌瀝青混凝土
★ 流變特性
★ 混合性能
★ 壓實性能
關鍵字(英) ★ Zeolite
★ Warm mix asphalt
★ rheological properties
★ mixing performance
★ Compactability
論文目次 Table of Contents

Abstract 2
Table of Contents 4
List of Figures 7
List of Table 9
List of Abbreviations 10
List of Symbols 11
I. Introduction 1
1-1 Research Backgrounds 1
1-2 Research Objectives 2
1-3 Research Scopes 2
1-4 Study Flowchart 2
II. Literature Review 5
2-1 Warm Mix Asphalt 5
2-1-1 Organic Additives 5
2-1-2 Chemical Additives 6
2-1-3 Foaming Processes 6
2-2 Zeolite 6
2-2-1 Natural Zeolite 7
2-2-2 Synthetic Zeolite 7
2-3 Zeolite in WMA 8
2-3-1 Temperature Reduction with Viscosity Test 8
2-3-2 Temperature Reduction Without Viscosity Test 9
2-4 Mass Loss and Volume Increase 10
2-5 Moisture Sensitivity 11
2-6 Rutting Resistance 12
2-7 Compactability 15
2-8 Economic, Energy and Environmental Analysis 17
III. Methodology 20
3-1 Phase 1 for Asphalt Binder 20
3-1-1 Zeolite Characteristic 20
3-1-2 Asphalt Binder 22
3-2 Phase 2 for Asphalt Concrete 24
3-2-1 Material Properties 25
3-2-2 Coating 26
3-2-3 Compactability 27
3-2-4 Moisture Sensitivity 28
3-2-5 Rutting Test 28
3-2-6 Economic, Energy, and Environment Impact Analysis 29
IV. Result and Discussion 30
4-1 Phase 1 for Asphalt Binder 30
4-1-1 Zeolite Characteristic 30
4-1-2 Asphalt Binder 34
4-2 Phase 2 for Asphalt Concrete 40
4-2-1 Material Properties 40
4-2-2 Coating 43
4-2-3 Compactability 44
4-2-4 Moisture Sensitivity 48
4-2-5 Rutting Test 49
4-2-6 Economic, Energy and Environment Impact Analysis 52
4-3 Discussion 54
V. Conclusion and Recommendation 59
5-1 Conclusions 59
5-2 Recommendations 59
Reference 60
Appendix 68
參考文獻 [1] M. Hassan, “Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment,” Int. J. Constr. Educ. Res., vol. 6, no. 3, pp. 238–250, 2010, doi: 10.1080/15578771.2010.507619.
[2] G. Cheraghian et al., “Warm mix asphalt technology: An up to date review,” J. Clean. Prod., vol. 268, p. 122128, 2020, doi: 10.1016/j.jclepro.2020.122128.
[3] A. Jamshidi and G. White, “The Challenges of Warm Mix Asphalt as a Mature Technology,” in Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements---Mairepav9, 2020, pp. 93–102.
[4] A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties,” J. Clean. Prod., vol. 259, p. 120817, 2020, doi: 10.1016/j.jclepro.2020.120817.
[5] P. Caputo et al., “The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology,” Nanomaterials, vol. 10, no. 6, pp. 1–17, 2020, doi: 10.3390/nano10061202.
[6] R. Vidal, E. Moliner, G. Martínez, and M. C. Rubio, “Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement,” Resour. Conserv. Recycl., vol. 74, pp. 101–114, 2013, doi: 10.1016/j.resconrec.2013.02.018.
[7] S. Sargand, M. D. Nazzal, A. Al-Rawashdeh, and D. Powers, “Field Evaluation of Warm-Mix Asphalt Technologies,” J. Mater. Civ. Eng., vol. 24, no. 11, pp. 1343–1349, 2012, doi: 10.1061/(asce)mt.1943-5533.0000434.
[8] G. Zou, J. Xu, and C. Wu, “Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design,” Int. J. Pavement Res. Technol., vol. 10, no. 3, pp. 282–288, 2017, doi: 10.1016/j.ijprt.2017.03.008.
[9] E. Sanchez-Alonso, A. Vega-Zamanillo, M. A. Calzada-Perez, and D. Castro-Fresno, “Effect of warm additives on rutting and fatigue behaviour of asphalt mixtures,” Constr. Build. Mater., vol. 47, pp. 240–244, 2013, doi: 10.1016/j.conbuildmat.2013.05.083.
[10] J. Cejka, H. Van Bekkum, A. Corma, and F. Schüth, “Studies in Surface Science and Catalysis 168: Introduction to Zeolite science and practice,” Studies in Surface Science and Catalysis, vol. 168. p. 455, 2007.
[11] R. Vaiana, T. Iuele, V. Gallelli, and S. L. Tighe, “Warm mix asphalt by water-containing methodology: A laboratory study on workability properties versus micro-foaming time,” Can. J. Civ. Eng., vol. 41, no. 3, pp. 183–190, 2014, doi: 10.1139/cjce-2013-0080.
[12] E. Sanchez-Alonso, A. Vega-Zamanillo, D. Castro-Fresno, and M. Delrio-Prat, “Evaluation of compactability and mechanical properties of bituminous mixes with warm additives,” Constr. Build. Mater., vol. 25, no. 5, pp. 2304–2311, 2011, doi: 10.1016/j.conbuildmat.2010.11.024.
[13] B. Şengöz, A. Topal, and C. Gorkem, “Evaluation of moisture characteristics of warm mix asphalt involving natural zeolite,” Road Mater. Pavement Des., vol. 14, no. 4, pp. 933–945, 2013, doi: 10.1080/14680629.2013.817352.
[14] B. Sengoz, A. Topal, and C. Gorkem, “Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives,” Constr. Build. Mater., vol. 43, pp. 242–252, 2013, doi: 10.1016/j.conbuildmat.2013.02.026.
[15] M. C. Rubio, G. Martínez, L. Baena, and F. Moreno, “Warm Mix Asphalt: An overview,” J. Clean. Prod., vol. 24, pp. 76–84, 2012, doi: 10.1016/j.jclepro.2011.11.053.
[16] A. Almeida-Costa and A. Benta, “Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt,” J. Clean. Prod., vol. 112, pp. 2308–2317, 2016, doi: 10.1016/j.jclepro.2015.10.077.
[17] L. Shang, S. Wang, Y. Zhang, and Y. Zhang, “Pyrolyzed wax from recycled cross-linked polyethylene as warm mix asphalt (WMA) additive for SBS modified asphalt,” Constr. Build. Mater., vol. 25, no. 2, pp. 886–891, 2011, doi: 10.1016/j.conbuildmat.2010.06.097.
[18] A. Kavussi and L. Hashemian, “Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 415–423, 2012, doi: 10.1080/10298436.2011.597859.
[19] A. Woszuk, M. Wróbel, and W. Franus, “Influence of waste engine oil addition on the properties of zeolite-foamed asphalt,” Materials (Basel)., vol. 12, no. 14, 2019, doi: 10.3390/ma12142265.
[20] X. Zhao, “Porous materials for direct and indirect evaporative cooling in buildings,” Mater. Energy Effic. Therm. Comf. Build., pp. 399–426, 2010, doi: 10.1533/9781845699277.2.399.
[21] M. Król, “Natural vs. synthetic Zeolites,” Crystals, vol. 10, no. 7. Multidisciplinary Digital Publishing Institute, p. 622, 2020.
[22] S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment,” Chem. Eng. J., vol. 156, no. 1, pp. 11–24, 2010, doi: 10.1016/j.cej.2009.10.029.
[23] P. Pal, “Nanotechnology in Water Treatment,” Ind. Water Treat. Process Technol., pp. 513–536, 2017, doi: 10.1016/b978-0-12-810391-3.00007-2.
[24] A. Woszuk, A. Zofka, L. Bandura, and W. Franus, “Effect of zeolite properties on asphalt foaming,” Constr. Build. Mater., vol. 139, pp. 247–255, 2017, doi: 10.1016/j.conbuildmat.2017.02.054.
[25] R. Bai, Y. Song, Y. Li, and J. Yu, “Creating Hierarchical Pores in Zeolite Catalysts,” Trends Chem., vol. 1, no. 6, pp. 601–611, 2019, doi: 10.1016/j.trechm.2019.05.010.
[26] A. Woszuk and W. Franus, “Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives,” Constr. Build. Mater., vol. 114, pp. 556–563, 2016, doi: 10.1016/j.conbuildmat.2016.03.188.
[27] W. Franus, M. Wdowin, and M. Franus, “Synthesis and characterization of zeolites prepared from industrial fly ash,” Environ. Monit. Assess., vol. 186, no. 9, pp. 5721–5729, 2014, doi: 10.1007/s10661-014-3815-5.
[28] M. Franus, M. Wdowin, L. Bandura, and W. Franus, “Removal of environmental pollutions using zeolites from fly ash: A review,” Fresenius Environ. Bull., vol. 24, no. 3A, pp. 854–866, 2015.
[29] B. Kheradmand, R. Muniandy, L. T. Hua, R. B. Yunus, and A. Solouki, “An overview of the emerging warm mix asphalt technology,” Int. J. Pavement Eng., vol. 15, no. 1, pp. 79–94, 2014, doi: 10.1080/10298436.2013.839791.
[30] R. Bonaquist, Transportation Research Board, and National Cooperative Highway Research Program. NCHRP Report 691: Mix Design Practices for Warm-Mix Asphalt, 2011.
[31] Y. Zhang, Z. Leng, F. Zou, L. Wang, S. S. Chen, and D. C. W. Tsang, “Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt,” J. Clean. Prod., vol. 172, pp. 686–695, 2018, doi: 10.1016/j.jclepro.2017.10.005.
[32] J. De Visscher, F. Vervaecke, A. Vanelstraete, H. Soenen, T. Tanghe, and P. Redelius, “Asphalt production at reduced temperatures using zeolites and the impact on asphalt performance,” Road Mater. Pavement Des., vol. 11, no. 1, pp. 65–81, 2010, doi: 10.1080/14680629.2010.9690260.
[33] A. J. Hanz, A. Faheem, E. Mahmoud, and H. U. Bahia, “Measuring effects of warm-mix additives: Use of newly developed asphalt binder lubricity test for the dynamic shear rheometer,” Transp. Res. Rec., no. 2180, pp. 85–92, 2010, doi: 10.3141/2180-10.
[34] H. M. Yin and B. Lai, “Visco-elastic characterisation of zeolite modified asphalt binder considering phase transformation and air void interaction,” Road Mater. Pavement Des., vol. 13, no. 2, pp. 279–299, 2012, doi: 10.1080/14680629.2012.668837.
[35] S. Xu, F. Xiao, S. Amirkhanian, and D. Singh, “Moisture characteristics of mixtures with warm mix asphalt technologies – A review,” Constr. Build. Mater., vol. 142, pp. 148–161, 2017, doi: 10.1016/j.conbuildmat.2017.03.069.
[36] A. I. Al-Hadidy and S. A. Khalid, “Influence of Long-Term Aging on the Engineering Properties of WMA Mixtures Containing Petroleum Wax and Natural Zeolite,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00047-9.
[37] M. Arabani, Z. Ranjbar Pirbasti, and G. H. Hamedi, “Investigating the impact of zeolite on reducing the effects of changes in runoff acidity and the moisture sensitivity of asphalt mixtures,” Constr. Build. Mater., vol. 268, no. 2021, p. 121071, 2021, doi: 10.1016/j.conbuildmat.2020.121071.
[38] G. Valdes-Vidal, A. Calabi-Floody, and E. Sanchez-Alonso, “Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement construction,” Constr. Build. Mater., vol. 174, pp. 576–585, 2018, doi: 10.1016/j.conbuildmat.2018.04.149.
[39] S. Tassiri, K. Kanitpong, and A. Sawangsuriya, “Effects of Additives on the Performance Properties of Warm Mix Asphalt with Reclaimed Asphalt Pavement,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00085-3.
[40] H. H. Mohammed and A. N. Mustafa, “Evaluation of Warm Mix Asphalt Performance Involving Synthetic Zeolite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 737, no. 1, 2020, doi: 10.1088/1757-899X/737/1/012125.
[41] R. Guo, T. Nian, and F. zhou, “Analysis of factors that influence anti-rutting performance of asphalt pavement,” Constr. Build. Mater., vol. 254, p. 119237, 2020, doi: 10.1016/j.conbuildmat.2020.119237.
[42] Y. Du, J. Chen, Z. Han, and W. Liu, “A review on solutions for improving rutting resistance of asphalt pavement and test methods,” Constr. Build. Mater., vol. 168, pp. 893–905, 2018, doi: 10.1016/j.conbuildmat.2018.02.151.
[43] B. de C. Amoni, A. D. L. de Freitas, A. R. Loiola, J. B. Soares, and S. de A. Soares, “A method for NaA zeolite synthesis from coal fly ash and its application in warm mix asphalt,” Road Mater. Pavement Des., vol. 20, no. sup2, pp. S558–S567, 2019, doi: 10.1080/14680629.2019.1633766.
[44] Z. Hossain, M. Zaman, E. A. O’Rear, and D. H. Chen, “Effectiveness of water-bearing and anti-stripping additives in warm mix asphalt technology,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 424–432, 2012, doi: 10.1080/10298436.2011.616588.
[45] T. Gandhi, C. Akisetty, and S. Amirkhanian, “Laboratory evaluation of warm asphalt binder aging characteristics,” Int. J. Pavement Eng., vol. 10, no. 5, pp. 353–359, 2009, doi: 10.1080/10298430802342724.
[46] V. Hosahally Nanjegowda, R. Patel, J. Mahimaluru, and K. Prapoorna Biligiri, “Synthesis and characterization of zeolite-like additive: An eco-efficient asphalt mix production strategy,” Constr. Build. Mater., vol. 266, p. 120898, 2021, doi: 10.1016/j.conbuildmat.2020.120898.
[47] X. Han et al., “Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt,” Constr. Build. Mater., vol. 259, p. 119713, 2020, doi: 10.1016/j.conbuildmat.2020.119713.
[48] M. A. Ishaq, L. Venturini, and F. Giustozzi, “Correlation Between Rheological Rutting Tests on Bitumen and Asphalt Mix Flow Number,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00089-z.
[49] A. V. Kataware and D. Singh, “Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance,” Constr. Build. Mater., vol. 146, pp. 436–444, 2017, doi: 10.1016/j.conbuildmat.2017.04.043.
[50] A. Topal, J. Oner, B. Sengoz, P. A. Dokandari, and D. Kaya, “Evaluation of Rutting Performance of Warm Mix Asphalt,” Int. J. Civ. Eng., vol. 15, no. 4, pp. 705–714, 2017, doi: 10.1007/s40999-017-0188-5.
[51] G. Valdés-Vidal, A. Calabi-Floody, E. Sanchez-Alonso, C. Díaz, and C. Fonseca, “Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt,” Constr. Build. Mater., vol. 262, 2020, doi: 10.1016/j.conbuildmat.2020.120069.
[52] H. U. Bahia, T. P. Friemel, P. A. Peterson, J. S. Russell, and B. Poehnelt, “Optimization of constructibility and resistance to traffic: a new design approach for HMA using the superpave compactor,” J. Assoc. Asph. Paving Technol., vol. 67, 1998.
[53] A. F. F. Mahmoud and H. Bahia, “Using gyratory compactor to measure mechanical stability of asphalt mixtures,” Wisconsin Highway Research Program, 2004.
[54] S. Dessouky, A. Pothuganti, L. F. Walubita, and D. Rand, “Laboratory Evaluation of the Workability and Compactability of Asphaltic Materials prior to Road Construction,” J. Mater. Civ. Eng., vol. 25, no. 6, pp. 810–818, 2013, doi: 10.1061/(asce)mt.1943-5533.0000551.
[55] AASHTO R35-17, “Standard Practice for Superpave Volumetric Design for Asphalt Mixtures,” vol. 14, no. 2018, pp. 1–27, 2019.
[56] A. Romier, M. Audeen, J. David, Y. Martineau, and F. Olard, “Low-energy asphalt with performance of hot-mix asphalt,” Transp. Res. Rec., no. 1962, pp. 101–112, 2006, doi: 10.3141/1962-12.
[57] Department of Trade and Industry of the United Kingdom, “Digest of United Kingdom energy statistics 2006.” The Stationery Office London, 2006.
[58] F. and R. A. of the U. K. Department for Environment, “UK government GHG conversion factors for company reporting,” London, UK DECC, DEFRA, 2016.
[59] J. Zhang, L. F. Walubita, A. N. M. Faruk, P. Karki, and G. S. Simate, “Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance - A laboratory study,” Constr. Build. Mater., vol. 94, pp. 218–227, 2015, doi: 10.1016/j.conbuildmat.2015.06.044.
[60] I. Syed, M. A. Hasan, and R. A. Tarefder, “Investigation of rutting performance of different warm mix asphalt (WMA) Mixtures,” Int. J. GEOMATE, vol. 14, no. 45, pp. 116–123, 2018, doi: 10.21660/2018.45.7328.
[61] B. Lai, C. Barros, and H. Yin, “Investigation of rheological behavior of asphalt binder modified by the Advera® additive,” Poromechanics IV - 4th Biot Conf. Poromechanics, no. December, pp. 487–492, 2009.
[62] A. Woszuk, “Application of fly ash derived zeolites in warm-mix asphalt technology,” Materials (Basel)., vol. 11, no. 9, 2018, doi: 10.3390/ma11091542.
[63] X. Han et al., “Preparation and properties of silane coupling agent modified zeolite as warm mix additive,” Constr. Build. Mater., vol. 244, p. 118408, 2020, doi: 10.1016/j.conbuildmat.2020.118408.
[64] ASTM D 4402, “Standard Test Method for Viscosity Determination Using a Rotational Viscometer,” Annu. B. ASTM Stand., vol. 87, no. Reapproved, pp. 1–5, 2000, doi: 10.1520/D4402.
[65] ASTM D7175-15, “Determining the Low-Temperature Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR),” pp. 1–62, 2015, doi: 10.1520/D7175-15.Copyright.
[66] ASTM D373-21a, “Standard Specification for Performance-Graded Asphalt Binder,” 2021, doi: 10.1520/D6373-21A.2.
[67] ASTM C136-19, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM Int. West Conshohocken, PA, 2019, doi: 10.1520/C0136.
[68] ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., vol. i, pp. 1–5, 2015, doi: 10.1520/C0128-15.2.
[69] ASTM C127, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., pp. 1–5, 2004, doi: 10.1520/C0127-15.2.
[70] ASTM D2489M-16, “Standard Test Method for Estimating Degree of Particle Coating of Asphalt Mixtures,” pp. 7–8, doi: 10.1520/D2489.
[71] ASTM D6931-17, “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures,” pp. 3–7, 2011, doi: 10.1520/D6931-17.2.
[72] AASHTO T324, “Standard method of test for Hamburg wheel-track testing of compacted asphalt mixtures,” pp. 1–12, 2019.
[73] F. Zou, Z. Leng, R. Cao, G. Li, Y. Zhang, and A. Sreeram, “Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive,” Resour. Conserv. Recycl., vol. 181, no. November 2021, p. 106254, 2022, doi: 10.1016/j.resconrec.2022.106254.
[74] MS-2, “Asphalt mix design methods,” Man. Ser. Asph. Inst., 2014.
[75] Illinois Department of Transportation, “Standard Specifications for Road and Bridge Construction,” 2016.
[76] Texas Department of Transportation, “Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges,” no. December, 2014.
指導教授 陳世晃(Chen Shih Huang Putri Adhitana Paramitha) 審核日期 2022-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明