參考文獻 |
[1] M. Hassan, “Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment,” Int. J. Constr. Educ. Res., vol. 6, no. 3, pp. 238–250, 2010, doi: 10.1080/15578771.2010.507619.
[2] G. Cheraghian et al., “Warm mix asphalt technology: An up to date review,” J. Clean. Prod., vol. 268, p. 122128, 2020, doi: 10.1016/j.jclepro.2020.122128.
[3] A. Jamshidi and G. White, “The Challenges of Warm Mix Asphalt as a Mature Technology,” in Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements---Mairepav9, 2020, pp. 93–102.
[4] A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties,” J. Clean. Prod., vol. 259, p. 120817, 2020, doi: 10.1016/j.jclepro.2020.120817.
[5] P. Caputo et al., “The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology,” Nanomaterials, vol. 10, no. 6, pp. 1–17, 2020, doi: 10.3390/nano10061202.
[6] R. Vidal, E. Moliner, G. Martínez, and M. C. Rubio, “Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement,” Resour. Conserv. Recycl., vol. 74, pp. 101–114, 2013, doi: 10.1016/j.resconrec.2013.02.018.
[7] S. Sargand, M. D. Nazzal, A. Al-Rawashdeh, and D. Powers, “Field Evaluation of Warm-Mix Asphalt Technologies,” J. Mater. Civ. Eng., vol. 24, no. 11, pp. 1343–1349, 2012, doi: 10.1061/(asce)mt.1943-5533.0000434.
[8] G. Zou, J. Xu, and C. Wu, “Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design,” Int. J. Pavement Res. Technol., vol. 10, no. 3, pp. 282–288, 2017, doi: 10.1016/j.ijprt.2017.03.008.
[9] E. Sanchez-Alonso, A. Vega-Zamanillo, M. A. Calzada-Perez, and D. Castro-Fresno, “Effect of warm additives on rutting and fatigue behaviour of asphalt mixtures,” Constr. Build. Mater., vol. 47, pp. 240–244, 2013, doi: 10.1016/j.conbuildmat.2013.05.083.
[10] J. Cejka, H. Van Bekkum, A. Corma, and F. Schüth, “Studies in Surface Science and Catalysis 168: Introduction to Zeolite science and practice,” Studies in Surface Science and Catalysis, vol. 168. p. 455, 2007.
[11] R. Vaiana, T. Iuele, V. Gallelli, and S. L. Tighe, “Warm mix asphalt by water-containing methodology: A laboratory study on workability properties versus micro-foaming time,” Can. J. Civ. Eng., vol. 41, no. 3, pp. 183–190, 2014, doi: 10.1139/cjce-2013-0080.
[12] E. Sanchez-Alonso, A. Vega-Zamanillo, D. Castro-Fresno, and M. Delrio-Prat, “Evaluation of compactability and mechanical properties of bituminous mixes with warm additives,” Constr. Build. Mater., vol. 25, no. 5, pp. 2304–2311, 2011, doi: 10.1016/j.conbuildmat.2010.11.024.
[13] B. Şengöz, A. Topal, and C. Gorkem, “Evaluation of moisture characteristics of warm mix asphalt involving natural zeolite,” Road Mater. Pavement Des., vol. 14, no. 4, pp. 933–945, 2013, doi: 10.1080/14680629.2013.817352.
[14] B. Sengoz, A. Topal, and C. Gorkem, “Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives,” Constr. Build. Mater., vol. 43, pp. 242–252, 2013, doi: 10.1016/j.conbuildmat.2013.02.026.
[15] M. C. Rubio, G. Martínez, L. Baena, and F. Moreno, “Warm Mix Asphalt: An overview,” J. Clean. Prod., vol. 24, pp. 76–84, 2012, doi: 10.1016/j.jclepro.2011.11.053.
[16] A. Almeida-Costa and A. Benta, “Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt,” J. Clean. Prod., vol. 112, pp. 2308–2317, 2016, doi: 10.1016/j.jclepro.2015.10.077.
[17] L. Shang, S. Wang, Y. Zhang, and Y. Zhang, “Pyrolyzed wax from recycled cross-linked polyethylene as warm mix asphalt (WMA) additive for SBS modified asphalt,” Constr. Build. Mater., vol. 25, no. 2, pp. 886–891, 2011, doi: 10.1016/j.conbuildmat.2010.06.097.
[18] A. Kavussi and L. Hashemian, “Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 415–423, 2012, doi: 10.1080/10298436.2011.597859.
[19] A. Woszuk, M. Wróbel, and W. Franus, “Influence of waste engine oil addition on the properties of zeolite-foamed asphalt,” Materials (Basel)., vol. 12, no. 14, 2019, doi: 10.3390/ma12142265.
[20] X. Zhao, “Porous materials for direct and indirect evaporative cooling in buildings,” Mater. Energy Effic. Therm. Comf. Build., pp. 399–426, 2010, doi: 10.1533/9781845699277.2.399.
[21] M. Król, “Natural vs. synthetic Zeolites,” Crystals, vol. 10, no. 7. Multidisciplinary Digital Publishing Institute, p. 622, 2020.
[22] S. Wang and Y. Peng, “Natural zeolites as effective adsorbents in water and wastewater treatment,” Chem. Eng. J., vol. 156, no. 1, pp. 11–24, 2010, doi: 10.1016/j.cej.2009.10.029.
[23] P. Pal, “Nanotechnology in Water Treatment,” Ind. Water Treat. Process Technol., pp. 513–536, 2017, doi: 10.1016/b978-0-12-810391-3.00007-2.
[24] A. Woszuk, A. Zofka, L. Bandura, and W. Franus, “Effect of zeolite properties on asphalt foaming,” Constr. Build. Mater., vol. 139, pp. 247–255, 2017, doi: 10.1016/j.conbuildmat.2017.02.054.
[25] R. Bai, Y. Song, Y. Li, and J. Yu, “Creating Hierarchical Pores in Zeolite Catalysts,” Trends Chem., vol. 1, no. 6, pp. 601–611, 2019, doi: 10.1016/j.trechm.2019.05.010.
[26] A. Woszuk and W. Franus, “Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives,” Constr. Build. Mater., vol. 114, pp. 556–563, 2016, doi: 10.1016/j.conbuildmat.2016.03.188.
[27] W. Franus, M. Wdowin, and M. Franus, “Synthesis and characterization of zeolites prepared from industrial fly ash,” Environ. Monit. Assess., vol. 186, no. 9, pp. 5721–5729, 2014, doi: 10.1007/s10661-014-3815-5.
[28] M. Franus, M. Wdowin, L. Bandura, and W. Franus, “Removal of environmental pollutions using zeolites from fly ash: A review,” Fresenius Environ. Bull., vol. 24, no. 3A, pp. 854–866, 2015.
[29] B. Kheradmand, R. Muniandy, L. T. Hua, R. B. Yunus, and A. Solouki, “An overview of the emerging warm mix asphalt technology,” Int. J. Pavement Eng., vol. 15, no. 1, pp. 79–94, 2014, doi: 10.1080/10298436.2013.839791.
[30] R. Bonaquist, Transportation Research Board, and National Cooperative Highway Research Program. NCHRP Report 691: Mix Design Practices for Warm-Mix Asphalt, 2011.
[31] Y. Zhang, Z. Leng, F. Zou, L. Wang, S. S. Chen, and D. C. W. Tsang, “Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt,” J. Clean. Prod., vol. 172, pp. 686–695, 2018, doi: 10.1016/j.jclepro.2017.10.005.
[32] J. De Visscher, F. Vervaecke, A. Vanelstraete, H. Soenen, T. Tanghe, and P. Redelius, “Asphalt production at reduced temperatures using zeolites and the impact on asphalt performance,” Road Mater. Pavement Des., vol. 11, no. 1, pp. 65–81, 2010, doi: 10.1080/14680629.2010.9690260.
[33] A. J. Hanz, A. Faheem, E. Mahmoud, and H. U. Bahia, “Measuring effects of warm-mix additives: Use of newly developed asphalt binder lubricity test for the dynamic shear rheometer,” Transp. Res. Rec., no. 2180, pp. 85–92, 2010, doi: 10.3141/2180-10.
[34] H. M. Yin and B. Lai, “Visco-elastic characterisation of zeolite modified asphalt binder considering phase transformation and air void interaction,” Road Mater. Pavement Des., vol. 13, no. 2, pp. 279–299, 2012, doi: 10.1080/14680629.2012.668837.
[35] S. Xu, F. Xiao, S. Amirkhanian, and D. Singh, “Moisture characteristics of mixtures with warm mix asphalt technologies – A review,” Constr. Build. Mater., vol. 142, pp. 148–161, 2017, doi: 10.1016/j.conbuildmat.2017.03.069.
[36] A. I. Al-Hadidy and S. A. Khalid, “Influence of Long-Term Aging on the Engineering Properties of WMA Mixtures Containing Petroleum Wax and Natural Zeolite,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00047-9.
[37] M. Arabani, Z. Ranjbar Pirbasti, and G. H. Hamedi, “Investigating the impact of zeolite on reducing the effects of changes in runoff acidity and the moisture sensitivity of asphalt mixtures,” Constr. Build. Mater., vol. 268, no. 2021, p. 121071, 2021, doi: 10.1016/j.conbuildmat.2020.121071.
[38] G. Valdes-Vidal, A. Calabi-Floody, and E. Sanchez-Alonso, “Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement construction,” Constr. Build. Mater., vol. 174, pp. 576–585, 2018, doi: 10.1016/j.conbuildmat.2018.04.149.
[39] S. Tassiri, K. Kanitpong, and A. Sawangsuriya, “Effects of Additives on the Performance Properties of Warm Mix Asphalt with Reclaimed Asphalt Pavement,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00085-3.
[40] H. H. Mohammed and A. N. Mustafa, “Evaluation of Warm Mix Asphalt Performance Involving Synthetic Zeolite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 737, no. 1, 2020, doi: 10.1088/1757-899X/737/1/012125.
[41] R. Guo, T. Nian, and F. zhou, “Analysis of factors that influence anti-rutting performance of asphalt pavement,” Constr. Build. Mater., vol. 254, p. 119237, 2020, doi: 10.1016/j.conbuildmat.2020.119237.
[42] Y. Du, J. Chen, Z. Han, and W. Liu, “A review on solutions for improving rutting resistance of asphalt pavement and test methods,” Constr. Build. Mater., vol. 168, pp. 893–905, 2018, doi: 10.1016/j.conbuildmat.2018.02.151.
[43] B. de C. Amoni, A. D. L. de Freitas, A. R. Loiola, J. B. Soares, and S. de A. Soares, “A method for NaA zeolite synthesis from coal fly ash and its application in warm mix asphalt,” Road Mater. Pavement Des., vol. 20, no. sup2, pp. S558–S567, 2019, doi: 10.1080/14680629.2019.1633766.
[44] Z. Hossain, M. Zaman, E. A. O’Rear, and D. H. Chen, “Effectiveness of water-bearing and anti-stripping additives in warm mix asphalt technology,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 424–432, 2012, doi: 10.1080/10298436.2011.616588.
[45] T. Gandhi, C. Akisetty, and S. Amirkhanian, “Laboratory evaluation of warm asphalt binder aging characteristics,” Int. J. Pavement Eng., vol. 10, no. 5, pp. 353–359, 2009, doi: 10.1080/10298430802342724.
[46] V. Hosahally Nanjegowda, R. Patel, J. Mahimaluru, and K. Prapoorna Biligiri, “Synthesis and characterization of zeolite-like additive: An eco-efficient asphalt mix production strategy,” Constr. Build. Mater., vol. 266, p. 120898, 2021, doi: 10.1016/j.conbuildmat.2020.120898.
[47] X. Han et al., “Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt,” Constr. Build. Mater., vol. 259, p. 119713, 2020, doi: 10.1016/j.conbuildmat.2020.119713.
[48] M. A. Ishaq, L. Venturini, and F. Giustozzi, “Correlation Between Rheological Rutting Tests on Bitumen and Asphalt Mix Flow Number,” Int. J. Pavement Res. Technol., no. 0123456789, 2021, doi: 10.1007/s42947-021-00089-z.
[49] A. V. Kataware and D. Singh, “Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance,” Constr. Build. Mater., vol. 146, pp. 436–444, 2017, doi: 10.1016/j.conbuildmat.2017.04.043.
[50] A. Topal, J. Oner, B. Sengoz, P. A. Dokandari, and D. Kaya, “Evaluation of Rutting Performance of Warm Mix Asphalt,” Int. J. Civ. Eng., vol. 15, no. 4, pp. 705–714, 2017, doi: 10.1007/s40999-017-0188-5.
[51] G. Valdés-Vidal, A. Calabi-Floody, E. Sanchez-Alonso, C. Díaz, and C. Fonseca, “Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt,” Constr. Build. Mater., vol. 262, 2020, doi: 10.1016/j.conbuildmat.2020.120069.
[52] H. U. Bahia, T. P. Friemel, P. A. Peterson, J. S. Russell, and B. Poehnelt, “Optimization of constructibility and resistance to traffic: a new design approach for HMA using the superpave compactor,” J. Assoc. Asph. Paving Technol., vol. 67, 1998.
[53] A. F. F. Mahmoud and H. Bahia, “Using gyratory compactor to measure mechanical stability of asphalt mixtures,” Wisconsin Highway Research Program, 2004.
[54] S. Dessouky, A. Pothuganti, L. F. Walubita, and D. Rand, “Laboratory Evaluation of the Workability and Compactability of Asphaltic Materials prior to Road Construction,” J. Mater. Civ. Eng., vol. 25, no. 6, pp. 810–818, 2013, doi: 10.1061/(asce)mt.1943-5533.0000551.
[55] AASHTO R35-17, “Standard Practice for Superpave Volumetric Design for Asphalt Mixtures,” vol. 14, no. 2018, pp. 1–27, 2019.
[56] A. Romier, M. Audeen, J. David, Y. Martineau, and F. Olard, “Low-energy asphalt with performance of hot-mix asphalt,” Transp. Res. Rec., no. 1962, pp. 101–112, 2006, doi: 10.3141/1962-12.
[57] Department of Trade and Industry of the United Kingdom, “Digest of United Kingdom energy statistics 2006.” The Stationery Office London, 2006.
[58] F. and R. A. of the U. K. Department for Environment, “UK government GHG conversion factors for company reporting,” London, UK DECC, DEFRA, 2016.
[59] J. Zhang, L. F. Walubita, A. N. M. Faruk, P. Karki, and G. S. Simate, “Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance - A laboratory study,” Constr. Build. Mater., vol. 94, pp. 218–227, 2015, doi: 10.1016/j.conbuildmat.2015.06.044.
[60] I. Syed, M. A. Hasan, and R. A. Tarefder, “Investigation of rutting performance of different warm mix asphalt (WMA) Mixtures,” Int. J. GEOMATE, vol. 14, no. 45, pp. 116–123, 2018, doi: 10.21660/2018.45.7328.
[61] B. Lai, C. Barros, and H. Yin, “Investigation of rheological behavior of asphalt binder modified by the Advera® additive,” Poromechanics IV - 4th Biot Conf. Poromechanics, no. December, pp. 487–492, 2009.
[62] A. Woszuk, “Application of fly ash derived zeolites in warm-mix asphalt technology,” Materials (Basel)., vol. 11, no. 9, 2018, doi: 10.3390/ma11091542.
[63] X. Han et al., “Preparation and properties of silane coupling agent modified zeolite as warm mix additive,” Constr. Build. Mater., vol. 244, p. 118408, 2020, doi: 10.1016/j.conbuildmat.2020.118408.
[64] ASTM D 4402, “Standard Test Method for Viscosity Determination Using a Rotational Viscometer,” Annu. B. ASTM Stand., vol. 87, no. Reapproved, pp. 1–5, 2000, doi: 10.1520/D4402.
[65] ASTM D7175-15, “Determining the Low-Temperature Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR),” pp. 1–62, 2015, doi: 10.1520/D7175-15.Copyright.
[66] ASTM D373-21a, “Standard Specification for Performance-Graded Asphalt Binder,” 2021, doi: 10.1520/D6373-21A.2.
[67] ASTM C136-19, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM Int. West Conshohocken, PA, 2019, doi: 10.1520/C0136.
[68] ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., vol. i, pp. 1–5, 2015, doi: 10.1520/C0128-15.2.
[69] ASTM C127, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., pp. 1–5, 2004, doi: 10.1520/C0127-15.2.
[70] ASTM D2489M-16, “Standard Test Method for Estimating Degree of Particle Coating of Asphalt Mixtures,” pp. 7–8, doi: 10.1520/D2489.
[71] ASTM D6931-17, “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures,” pp. 3–7, 2011, doi: 10.1520/D6931-17.2.
[72] AASHTO T324, “Standard method of test for Hamburg wheel-track testing of compacted asphalt mixtures,” pp. 1–12, 2019.
[73] F. Zou, Z. Leng, R. Cao, G. Li, Y. Zhang, and A. Sreeram, “Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive,” Resour. Conserv. Recycl., vol. 181, no. November 2021, p. 106254, 2022, doi: 10.1016/j.resconrec.2022.106254.
[74] MS-2, “Asphalt mix design methods,” Man. Ser. Asph. Inst., 2014.
[75] Illinois Department of Transportation, “Standard Specifications for Road and Bridge Construction,” 2016.
[76] Texas Department of Transportation, “Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges,” no. December, 2014. |