博碩士論文 109323022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.149.234.94
姓名 余雅各(Ya- Ke Yu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用質子交換膜電解槽之現場產氫型加氫站複合系統分析
(Analysis of Compound System of On-site Hydrogen Refueling Station Using Proton Exchange Membrane Electrolyzer)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 本研究建立以質子交換膜電解槽(Proton-exchange Membrane Electrolyzer Cell, PEMEC)之現場產氫型加氫站複合系統模型(On-site Hydrogen Refueling Station)。氫氣由PEMEC電解製造,根據電化學理論利用MATLAB計算電解槽之性能曲線,再將電化學程式鑲嵌於商用軟體Thermolib進行串接,擴大至500 kW電堆規模,能模擬於不同溫度、流量及材料參數對電解性能之影響,探討各項參數對產氫量的敏感度,從中分析熱力特性及電解功率。並根據SAE J2601加氫協定,由環境溫度、冷卻溫度與初始壓力計算加氫速率。透過模擬完整壓縮氫氣與加氫程序,探討在不同環境溫度下,儲氫壓力等級對壓縮能耗之差異,以及不同加氫方式與預冷溫度,對系統能耗與性能之影響。
研究結果表明,敏感度分析以電解質導電度為影響電解槽性能之最主要參數。在三級壓力儲氫槽中,壓力分別為30、55、90 MPa時,具有最低壓縮能耗。在本研究建置T40加氫站系統中,預冷溫度為-33 oC時,使用查表法進行加氫,每公斤氫氣比MC公式法節省0.02度電。而預冷溫度達到-40 oC時,使用MC公式法進行加氫程序具有最短之加氫時間,相比查表法縮短33%。透過加氫方法及參數分析,建立低功耗高性能之現場產氫型加氫站複合系統。
摘要(英) In transformation of hydrocarbon to hydrogen economy, hydrogen fueling stations for automobiles will be established like gas fuel stations for easy public access. On site conversion of water into hydrogen with Proton-Exchange Membrane Electrolyzer Cell (PEMEC) is a feasible process to meet future demands. The functioning of a composite system model of an on-site hydrogen refueling station with a (PEMEC) is focused in this study. According to the electrochemical theory, MATLAB is used to calculate the performance curve of the electrolysis cell, and then the electrochemical program is embedded in the commercial software Thermolib for serial connection. And the scale of the stack is expanded to 500 kW, which can simulate different temperatures, flow rates and materials. The influence of parameters on electrolysis performance, the sensitivity of various parameters to hydrogen production, and thermodynamic characteristics and electrolysis power were investigated. This two fueling methods “look up table” and “MC formula” method with in SAE J2601 protocol is followed in this hydrogen refueling station study to calculate the fuel flow rate from the ambient temperature, cooling temperature and initial pressure. In this simulation study: (1) the complete process of compressing hydrogen and hydrogen generation; (2) various hydrogen storage pressure levels to decrease the energy consumption by compressor under different ambient temperatures; and (3) the influence of different hydrogen refueling methods and pre-cooling temperatures on system energy consumption and performance are discussed.
The research results show that, the conductivity of the electrolyte as the most important parameter affecting the performance of the electrolysis cell. Also, compressor consumes lower energy when low, medium and high hydrogen storage tanks are at 35 MPa, 55 MPa and 90 MPa respectively. The lookup table method saves 0.02 kWh of electricity consumption of T40 hydrogen refueling station for every kilogram of hydrogen at a pre-cooling temperature of -33 oC. Where as at pre-cooling temperature of -40 oC, the MC formula method has 33% shorter hydrogen refueling time than the lookup table method. A hydrogen refueling station working parameters for higher performance and lower power consumption can be designed with thermos-fluid simulations. This study is useful for designing a hydrogen refueling station.
關鍵字(中) ★ 質子交換膜電解槽
★ 加氫站
關鍵字(英) ★ PEMEC
★ Hydrogen refueling station
★ SAE J2601
論文目次 中文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XII
符號表 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.2.1氫能 3
1.2.2產氫技術 6
1.2.3加氫站技術 16
1.3 研究動機與目的 19
第二章 文獻回顧 21
2.1 PEMEC數學模型與複合系統 21
2.2 高壓儲氫系統 24
2.3 加氫系統 26
第三章 理論分析 30
3.1 問題描述與假設 30
3.2 EC電化學模型 31
3.2.1 EC工作原理 31
3.2.2 極化現象 33
3.3 EC電堆模型 38
3.4 熱交換器 39
3.5 儲氫系統 40
3.6 節流閥 41
3.7加氫程序 44
3.7.1 SAE J2601加氫協議 44
3.7.2 SAE J2601查表法 46
3.7.2 SAE J2601 MC公式法 49
3.8 冷卻系統 52
3.9 效率定義 55
3.10 數值方法 55
第四章 結果與討論 59
4.1 產氫系統 59
4.1.1 EC性能曲線與模型驗證 59
4.1.2 EC敏感度分析 63
4.1.3 不同水氣量對產氫性能之影響 65
4.2 儲氫系統 68
4.2.1 單級與多級儲氫系統 68
4.2.2 多級儲存壓力對能耗之影響 69
4.3 加氫系統 74
4.3.1 SAE J2601 74
4.3.2 冷卻系統 79
4.3.3 加氫程序 81
4.3.4 MC 公式法與查表法 83
4.4 現場產氫加氫站複合系統 87
4.4.1 加氫站複合系統 87
4.4.2 加氫站複合系統人機介面 89
第五章 結論 92
5.1 結論 92
5.2 未來建議 93
第六章 參考文獻 95
參考文獻 [1] https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
[2] https://go-moea.tw/
[3] https://unfccc.saveoursky.org.tw/nir/2021nir/uploads/00_nir_full.pdf.
[4] https://zerotracker.net/
[5] https://www.iea.org/reports/net-zero-by-2050
[6] https://zh.wikipedia.org/wiki/%E9%87%8C%E7%A8%8B%E7%84%A6%E8%99%91
[7] https://www.carsifu.my/news/toyota-mirai-sets-guinness-world-records-title-with-1359km-zero-emission-journey
[8] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[9] https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf
[10] Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.
[11] https://www.energy.gov/eere/fuelcells/hydrogen-production-pathways
[12] Balat, H., & Kırtay, E. (2010). Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.
[13] https://www.materialsnet.com.tw/DocView.aspx?id=7480
[14] B. Coelho, A.C. Oliveira, A. Mendes, (2010). Concentrated solar power for renewable electricity and hydrogen production from water—a review. Energy Environ, 10(3), 1398-1405.
[15] Martini, M., van den Berg, A., Gallucci, F., & van Sint Annaland, M. (2016b). Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 303, 73–88.
[16] Dębek, R., Motak, M., Galvez, M. E., Da Costa, P., & Grzybek, T. (2017). Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition. Reaction Kinetics Mechanisms and Catalysis, 121(1), 185–208.
[17] Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., Manerbino, A., Coors, W. G., & Stoukides, M. (2016). Methane steam reforming at low temperatures in a BaZr0.7Ce0.2Y0.1O2.9 proton conducting membrane reactor. Applied Catalysis. B, Environmental, 186, 1–9.
[18] Kumar, A., Baldea, M., & Edgar, T. F. (2016). Real-time optimization of an industrial steam-methane reformer under distributed sensing. Control Engineering Practice, 54, 140–153.
[19] Jha, A., Jeong, D.-W., Lee, Y.-L., Jang, W.-J., Shim, J.-O., Jeon, K.-W., Rode, C. V., & Roh, H.-S. (2016). Chromium free high temperature water–gas shift catalyst for the production of hydrogen from waste derived synthesis gas. Applied Catalysis. A, General, 522, 21–31.
[20] Lin, K.-H., Lin, W.-H., Hsiao, C.-H., Chang, H.-F., & Chang, A. C.-C. (2012). Hydrogen production in steam reforming of glycerol by conventional and membrane reactors. International Journal of Hydrogen Energy, 37(18), 13770–13776.
[21] Sekine, Y., Yamagishi, K., Nogami, Y., Manabe, R., Oshima, K., & Ogo, S. (2016). Low temperature catalytic water gas shift in an electric field. Catalysis Letters, 146(8), 1423–1428.
[22] Balat, H., & Kırtay, E. (2010). Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.
[23] Bi, L., Boulfrad, S., & Traversa, E. (2014). Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chemical Society Reviews, 43(24), 8255–8270.
[24] D. Stolten, B. Emonts, Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons, 2016
[25] Bernholz, RWE′s former, current and possible future energy storage applications, 2018
[26] ITM, Hydrogen Refuelling Infrastructure. https://www.level-network.com/wp-content/uploads/2017/02/ITM-Power.pdf
[27] Hydrogen—Status and Possibilities, https://web.archive.org/web/20130916201553/http://www.bellona.org/filearchive/fil_Hydrogen_6-2002.pdf
[28] https://chuneng.bjx.com.cn/news/20210830/1173351.shtml
[29] https://fuelcellsworks.com/news/nel-launches-containerized-large-scale-pem-electrolyzer/
[30] https://www.powermag.com/shell-starts-up-10-mw-refhyne-hydrogen-electrolyzer-eyes-expansion-to-100-mw/
[31] https://www.airliquide.com/stories/industry/inauguration-worlds-largest-pem-electrolyzer-produce-decarbonized-hydrogen
[32] https://www.nsenergybusiness.com/news/air-liquide-quebec-pem-electrolyser/
[33] https://ore.catapult.org.uk/wp-content/uploads/2020/09/Solving-the-Integration-Challenge-ORE-Catapultr.pdf
[34] https://www.rechargenews.com/transition/linde-to-build-world-s-largest-electrolyser-to-produce-green-hydrogen/2-1-944080
[35] https://www.chemeurope.com/en/news/1169412/linde-to-build-own-and-operate-world-s-largest-pem-electrolyzer-for-green-hydrogen.html
[36] https://deepresource.wordpress.com/2021/01/16/linde-itm-building-24-mw-electrolyzer/
[37] Qin N, Brooker P. Hydrogen fueling stations infrastructure Cocoa, FL, USA:University of Central Florida; 2014. Semi-annual project report
[38] US Department of Energy. Hydrogen pipelines. 2018 Accessed https://www.energy.gov/eere/fuelcells/hydrogen-pipelines, Accessed date: 16 March 2018.
[39] H2 Tools. ‘international hydrogen fuelling stations’. Pacific Northwest National Laboratory; 2018.
[40] https://www.azom.com/article.aspx?ArticleID=14630
[41] https://www.azom.com/article.aspx?ArticleID=11683
[42] Onda, K., Murakami, T., Hikosaka, T., Kobayashi, M., Notu, R., & Ito, K. (2002). Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell. Journal of the Electrochemical Society, 149(8), A1069. https://doi.org/10.1149/1.1492287
[43] Choi, P. (2004). A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ionics, 175(1–4), 535–539. https://doi.org/10.1016/j.ssi.2004.01.076
[44] Marangio, F., Santarelli, M., & Cali, M. (2009). Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 34(3), 1143–1158.
[45] Lebbal, M. E., & Lecœuche, S. (2009). Identification and monitoring of a PEM electrolyser based on dynamical modelling. International Journal of Hydrogen Energy, 34(14), 5992–5999.
[46] Abdin, Z., Webb, C. J., & Gray, E. M. (2015). Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. International Journal of Hydrogen Energy, 40(39), 13243–13257.
[47] Nafeh, A. E.-S. A. (2011). Hydrogen production from a PV/PEM electrolyzer system using a neural-network-based MPPT algorithm. International Journal of Numerical Modelling Electronic Networks Devices and Fields, 24(3), 282–297.
[48] Fragiacomo, P., & Genovese, M. (2020). Developing a mathematical tool for hydrogen production, compression and storage. International Journal of Hydrogen Energy, 45(35), 17685–17701.
[49] Fragiacomo, P., & Genovese, M. (2020). Developing a mathematical tool for hydrogen production, compression and storage. International Journal of Hydrogen Energy, 45(35), 17685–17701.
[50] Lin, Z., Ou, S., Elgowainy, A., Reddi, K., Veenstra, M., & Verduzco, L. (2018). A method for determining the optimal delivered hydrogen pressure for fuel cell electric vehicles. Applied Energy, 216, 183–194.
[51] Rothuizen, E., Mérida, W., Rokni, M., & Wistoft-Ibsen, M. (2013). Optimization of hydrogen vehicle refueling via dynamic simulation. International Journal of Hydrogen Energy, 38(11), 4221–4231.
[52] Rothuizen, E., & Rokni, M. (2014). Optimization of the overall energy consumption in cascade fueling stations for hydrogen vehicles. International Journal of Hydrogen Energy, 39(1), 582–592.
[53] Chen, H., Zheng, J., Liu, Y., Xu, P., Li, L., Liu, P., & Bie, H. (2008). Optimization of hydrogen utilization ratio in hydrogen filling stations. Volume 1: Codes and Standards.
[54] Guo, J., Xing, L., Hua, Z., Gu, C., & Zheng, J. (2016). Optimization of compressed hydrogen gas cycling test system based on multi-stage storage and self-pressurized method. International Journal of Hydrogen Energy, 41(36), 16306–16315
[55] Xiao, L., Chen, J., Wu, Y., Zhang, W., Ye, J., Shao, S., & Xie, J. (2021). Effects of pressure levels in three-cascade storage system on the overall energy consumption in the hydrogen refueling station. International Journal of Hydrogen Energy.
[56] Fuel Cell Standards Committee. (2020). Fueling protocols for light duty gaseous hydrogen surface vehicles. SAE International.
[57] Reddi, K., Elgowainy, A., Rustagi, N., & Gupta, E. (2017). Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles. International Journal of Hydrogen Energy, 42(26), 16675–16685.
[58] Chochlidakis, C.-. G., & Rothuizen, E. D. (2020). Overall efficiency comparison between the fueling methods of SAEJ2601 using dynamic simulations. International Journal of Hydrogen Energy, 45(20), 11842–11854.
[59] Omdahl, N. H. (2014). Modeling of a hydrogen refueling station. NTNU.
[60] Elgowainy, A., Reddi, K., Lee, D.-Y., Rustagi, N., & Gupta, E. (2017). Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations. International Journal of Hydrogen Energy, 42(49), 29067–29079.
[61] Talpacci, E., Reuβ, M., Grube, T., Cilibrizzi, P., Gunnella, R., Robinius, M., & Stolten, D. (2018). Effect of cascade storage system topology on the cooling energy consumption in fueling stations for hydrogen vehicles. International Journal of Hydrogen Energy, 43(12), 6256–6265.
[62] Riedl, S. M. (2020). Development of a hydrogen refueling station design tool. International Journal of Hydrogen Energy, 45(1), 1–9.
[63] Reddi, K., Elgowainy, A., Rustagi, N., & Gupta, E. (2017a). Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. International Journal of Hydrogen Energy, 42(34), 21855–21865.
[64] http://www.me.nchu.edu.tw/lab/ICE/www/Courses/thermalfluid_2/chap_3_refrigeration.pdf
[65] Marangio, F., Pagani, M., Santarelli, M., & Calì, M. (2011). Concept of a high pressure PEM electrolyser prototype. International Journal of Hydrogen Energy, 36(13), 7807–7815.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明