博碩士論文 109323120 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.140.201.179
姓名 李漢祥(Han-Xiang Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以機器學習結合排液容器法量測液體密度與黏度
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今量測物性之方法中,當需量測之物性眾多時往往需使用不同的精密儀器,其中少有同時量測數種物性之儀器,且需花費額外的時間以及費用,故本研究建立一方法學,以較低之成本、時間並可彈性因應不同操作條件的多物性量測方法。以排液容器法為基礎,建置與其相仿之實驗系統,不採用文獻以迭代較為耗時之方式得到物性,而是結合計算流體力學與機器學習,以機器學習XGBoost做為流體密度、黏度表面張力的物性回歸模型,使用計算流體力學計算排液速度做為物性回歸模型的訓練及測試資料,最後再以實驗所得的排液資料驗證物性回歸模型的準確度。本文以40℃不同濃度之甘油水溶液以及35℃不同濃度之丙二醇水溶液進行實驗,再將實驗資料預處理後輸入物性回歸模型量測其密度、黏度、表面張力。密度量測之平均相對誤差均達1.3%以下,黏度量測之平均相對誤差均達6.3%以下,因實驗流體均為水溶液,表面張力對流率的影響易被黏度消弭,故於甘油水溶液與丙二醇水溶液中表面張力量測之平均相對誤差分別為17.16%與33.32%。
摘要(英) In the current methods of measuring physical properties, when there are many physical properties to be measured, different precision instruments are often used. Among them, there are few instruments that measure several physical properties at the same time, and it takes extra time and cost. This research aims to establish a methodology, a multi-physical property measurement method with lower cost, time and flexibility to respond to different operating conditions. Based on the draining vessel method, a similar experimental system is built. Instead of using literature to obtain physical properties in a time-consuming iterative way, it combines computational fluid dynamics and machine learning to use machine learning XGBoost as the surface of fluid density and viscosity. For the physical property regression model of tension, computational fluid dynamics is used to calculate the fluid discharge rate as the training and test data of the physical property regression model, and finally the accuracy of the physical property regression model is verified by the fluid discharge data obtained from the experiment. In this paper, different concentrations of glycerol aqueous solution at 40°C and propylene glycol aqueous solution of different concentrations at 35°C were used for experiments, and the experimental data were preprocessed and input into a physical property regression model to measure the density, viscosity, and surface tension. The average relative error of density measurement is below 1.3%, and the average relative error of viscosity measurement is below 6.3%. Since the experimental fluids are all aqueous solutions, the influence of surface tension on the flow rate is easily eliminated by the viscosity. The average relative errors of surface tension measurement in aqueous solution are 17.16% and 33.32%, respectively.
關鍵字(中) ★ 排液容器法
★ 計算流體力學
★ 機器學習
★ 密度
★ 黏度
★ 表面張力
關鍵字(英) ★ draining vessel method
★ computational fluid dynamics
★ Machine Learning
★ density
★ viscosity
★ surface tension
論文目次 口試委員會審定書 #
中文摘要 i
英文摘要 ii
目錄 iii
符號表 vi
圖目錄 viii
表目錄 xviii
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 已知的物性量測方法 2
1.2.2 排液容器法 8
1.2.3 機器學習應用於資料回歸 9
1.3 研究目的 10
Chapter 2 實驗方法 11
2.1 問題描述 11
2.2 實驗設計 12
2.2.1 實驗裝置 12
2.2.2 實驗程序 27
Chapter 3 機器學習 33
3.1 XGBoost 34
3.2 訓練資料來源 39
3.3 物性回歸模型與回歸流程 43
3.4 實驗驗證 45
3.4.1 實驗與模擬終止計算點對齊方式 47
3.4.2 回歸模型之敏感度分析 49
Chapter 4 結果與討論 50
4.1 排液容器之敏感度分析 50
4.1.1 孔口長度 51
4.1.2 孔口半徑 63
4.2 無因次參數分析 80
4.3 物性回歸模型訓練結果 83
4.4 甘油水溶液的物性量測 100
4.4.1 甘油水溶液實驗結果 100
4.4.2 模擬正算與實驗數據之質量流率誤差 111
4.4.3 物性回歸模型之敏感度分析結果 131
4.4.4 甘油水溶液回歸 138
4.5 丙二醇水溶液的物性量測 147
4.5.1 丙二醇水溶液實驗結果 147
4.5.2 模擬正算與實驗數據之質量流率誤差 156
4.5.3 丙二醇水溶液回歸結果 172
Chapter 5 結論與展望 181
5.1 結論 181
5.2 未來展望 183
參考文獻 184
附錄 189
參考文獻 [1] Mohazzabi, P., & James, M. C. (2012). A simple apparatus for demonstrating fluid forces and Newton′s Third Law. The Physics Teacher, 50(9), 537-539.
[2] Noureddini, H., Teoh, B. C., & Davis Clements, L. (1992). Densities of vegetable oils and fatty acids. Journal of the American Oil Chemists Society, 69(12), 1184-1188.
[3] Furtado, A., Batista, E., Spohr, I., & Filipe, E. (2009). Measurement of density using oscillation-type density meters calibration, traceability and uncertainties. Proceedings of the 14ème Congrès International de Métrologie.
[4] McKennell, R. (1956). Cone-plate viscometer. Analytical Chemistry, 28(11), 1710-1714.
[5] Kestin, J., Sokolov, M., & Wakeham, W. (1973). Theory of capillary viscometers. Applied scientific research, 27(1), 241-264.
[6] Pfitzner, J. (1976). Poiseuille and his law. Anaesthesia, 31(2), 273-275.
[7] Sheen, S. H., Chien, H. T., & Raptis, A. C. (1995). An in-line ultrasonic viscometer. In Review of progress in quantitative nondestructive evaluation (pp. 1151-1158). Springer, Boston, MA.
[8] Luo, R., Zhang, D., Zeng, Z., & Lytton, R. L. (2015). Effect of surface tension on the measurement of surface energy components of asphalt binders using the Wilhelmy Plate Method. Construction and Building Materials, 98, 900-909.
[9] Arashiro, E. Y., & Demarquette, N. R. (1999). Use of the pendant drop method to measure interfacial tension between molten polymers. Materials Research, 2(1), 23-32.
[10] Rapp, B. E. (2017). Measuring surface tension and free surface energy. Microfluidics: Modelling, Mechanics and Mathematics; Elsevier BV: Cambridge, MA, USA, 453-465.
[11] Roach, S. J., & Henein, H. (2003). A dynamic approach to determining the surface tension of a fluid. Canadian metallurgical quarterly, 42(2), 175-186.
[12] Roach, S. J., & Henein, H. (2005). A new method to dynamically measure the surface tension, viscosity, and density of melts. Metallurgical and Materials Transactions B, 36(5), 667-676.
[13] Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika, 61(3), 439-447.
[14] Roach, S. J., & Henein, H. (2012). Physical properties of AZ91D measured using the draining crucible method: Effect of SF6. International Journal of Thermophysics, 33(3), 484-494.
[15] Wu, J., Liu, C., Cui, W., and Zhang, Y. (2019). Personalized collaborative filtering recommendation algorithm based on linear regression, in 2019 IEEE International Conference on Power Data Science (ICPDS), pp. 139-142.
[16] Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. Comparison of VPN Protocols at Network Layer Focusing on Wire Guard Protocol, 2020, pp.157-177.
[17] Acharya, M. S., Armaan, A., & Antony, A. S. (2019, February). A comparison of regression models for prediction of graduate admissions. In 2019 international conference on computational intelligence in data science (ICCIDS) (pp. 1-5). IEEE.
[18] Huang, J. C., Ko, K. M., Shu, M. H., & Hsu, B. M. (2020). Application and comparison of several machine learning algorithms and their integration models in regression problems. Neural Computing and Applications, 32(10), 5461-5469.
[19] Holmstrom, M., Liu, D., & Vo, C. (2016). Machine learning applied to weather forecasting. Meteorol. Appl, 10, 1-5.
[20] Thabtah, F., Abdelhamid, N., & Peebles, D. (2019). A machine learning autism classification based on logistic regression analysis. Health information science and systems, 7(1), 1-11.
[21] Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in Finance (Vol. 1170). Springer International Publishing.
[22] 翁郡鴻(2021)。以計算流體力學結合排液容器法量測牛頓與非牛頓流體物性。國立中央大學機械工程學系碩士論文,桃園市。
[23] 顏芷珊(2019)。以計算流體力學結合排液容器法量測錫液之密度、黏度與表面張力係數。國立中央大學機械工程學系碩士論文,桃園市。
[24] 莊宗翰(2019)。以排液容器法量測流體的密度 、黏度以及表面張力。國立中央大學機械工程學系碩士論文,桃園市。
[25] 江宗軒(2019)。以排液容器法量測液態錫的密度、黏度以及表面張力。國立中央大學機械工程學系碩士論文,桃園市。
[26] 李亞寰(2019)。結合計算流體力學與排液容器法 量測流體之密度、黏度與表面張力係數。國立中央大學機械工程學系碩士論文,桃園市。
[27] 鍾志昂, 李亞寰, 莊宗翰, 江宗軒, 顏芷珊, 何正榮且鄭憲清, “物性測量裝置及測量物性的方法” . 中華民國 專利: I706124, 1 10 109.
[28] Glycerine Producers′ Association. (1963). Physical properties of glycerine and its solutions. Glycerine Producers′ Association.
[29] Chang, C. W., Hsiung, T. L., Lui, C. P., & Tu, C. H. (2015). Densities, surface tensions, and isobaric vapor–liquid equilibria for the mixtures of 2-propanol, water, and 1, 2-propanediol. Fluid Phase Equilibria, 389, 28-40.
[30] George, J., & Sastry, N. V. (2003). Densities, dynamic viscosities, speeds of sound, and relative permittivities for water+ alkanediols (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-diol) at different temperatures. Journal of Chemical & Engineering Data, 48(6), 1529-1539.
[31] Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. II—Recent progress. IBM Journal of research and development, 11(6), 601-617.
[32] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
[33] Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168).
[34] Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31.
[35] Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2), 337-407.
[36] Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827.
[37] 蔡惟旭(2022)。以深度學習結合計算流體力學量測液體密度、黏度與表面張力係數。國立中央大學機械工程學系碩士論文,桃園市。
[38] Dhaliwal, S. S., Nahid, A. A., & Abbas, R. (2018). Effective intrusion detection system using XGBoost. Information, 9(7), 149.
[39] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明