參考文獻 |
[1] Mohazzabi, P., & James, M. C. (2012). A simple apparatus for demonstrating fluid forces and Newton′s Third Law. The Physics Teacher, 50(9), 537-539.
[2] Noureddini, H., Teoh, B. C., & Davis Clements, L. (1992). Densities of vegetable oils and fatty acids. Journal of the American Oil Chemists Society, 69(12), 1184-1188.
[3] Furtado, A., Batista, E., Spohr, I., & Filipe, E. (2009). Measurement of density using oscillation-type density meters calibration, traceability and uncertainties. Proceedings of the 14ème Congrès International de Métrologie.
[4] McKennell, R. (1956). Cone-plate viscometer. Analytical Chemistry, 28(11), 1710-1714.
[5] Kestin, J., Sokolov, M., & Wakeham, W. (1973). Theory of capillary viscometers. Applied scientific research, 27(1), 241-264.
[6] Pfitzner, J. (1976). Poiseuille and his law. Anaesthesia, 31(2), 273-275.
[7] Sheen, S. H., Chien, H. T., & Raptis, A. C. (1995). An in-line ultrasonic viscometer. In Review of progress in quantitative nondestructive evaluation (pp. 1151-1158). Springer, Boston, MA.
[8] Luo, R., Zhang, D., Zeng, Z., & Lytton, R. L. (2015). Effect of surface tension on the measurement of surface energy components of asphalt binders using the Wilhelmy Plate Method. Construction and Building Materials, 98, 900-909.
[9] Arashiro, E. Y., & Demarquette, N. R. (1999). Use of the pendant drop method to measure interfacial tension between molten polymers. Materials Research, 2(1), 23-32.
[10] Rapp, B. E. (2017). Measuring surface tension and free surface energy. Microfluidics: Modelling, Mechanics and Mathematics; Elsevier BV: Cambridge, MA, USA, 453-465.
[11] Roach, S. J., & Henein, H. (2003). A dynamic approach to determining the surface tension of a fluid. Canadian metallurgical quarterly, 42(2), 175-186.
[12] Roach, S. J., & Henein, H. (2005). A new method to dynamically measure the surface tension, viscosity, and density of melts. Metallurgical and Materials Transactions B, 36(5), 667-676.
[13] Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika, 61(3), 439-447.
[14] Roach, S. J., & Henein, H. (2012). Physical properties of AZ91D measured using the draining crucible method: Effect of SF6. International Journal of Thermophysics, 33(3), 484-494.
[15] Wu, J., Liu, C., Cui, W., and Zhang, Y. (2019). Personalized collaborative filtering recommendation algorithm based on linear regression, in 2019 IEEE International Conference on Power Data Science (ICPDS), pp. 139-142.
[16] Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. Comparison of VPN Protocols at Network Layer Focusing on Wire Guard Protocol, 2020, pp.157-177.
[17] Acharya, M. S., Armaan, A., & Antony, A. S. (2019, February). A comparison of regression models for prediction of graduate admissions. In 2019 international conference on computational intelligence in data science (ICCIDS) (pp. 1-5). IEEE.
[18] Huang, J. C., Ko, K. M., Shu, M. H., & Hsu, B. M. (2020). Application and comparison of several machine learning algorithms and their integration models in regression problems. Neural Computing and Applications, 32(10), 5461-5469.
[19] Holmstrom, M., Liu, D., & Vo, C. (2016). Machine learning applied to weather forecasting. Meteorol. Appl, 10, 1-5.
[20] Thabtah, F., Abdelhamid, N., & Peebles, D. (2019). A machine learning autism classification based on logistic regression analysis. Health information science and systems, 7(1), 1-11.
[21] Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in Finance (Vol. 1170). Springer International Publishing.
[22] 翁郡鴻(2021)。以計算流體力學結合排液容器法量測牛頓與非牛頓流體物性。國立中央大學機械工程學系碩士論文,桃園市。
[23] 顏芷珊(2019)。以計算流體力學結合排液容器法量測錫液之密度、黏度與表面張力係數。國立中央大學機械工程學系碩士論文,桃園市。
[24] 莊宗翰(2019)。以排液容器法量測流體的密度 、黏度以及表面張力。國立中央大學機械工程學系碩士論文,桃園市。
[25] 江宗軒(2019)。以排液容器法量測液態錫的密度、黏度以及表面張力。國立中央大學機械工程學系碩士論文,桃園市。
[26] 李亞寰(2019)。結合計算流體力學與排液容器法 量測流體之密度、黏度與表面張力係數。國立中央大學機械工程學系碩士論文,桃園市。
[27] 鍾志昂, 李亞寰, 莊宗翰, 江宗軒, 顏芷珊, 何正榮且鄭憲清, “物性測量裝置及測量物性的方法” . 中華民國 專利: I706124, 1 10 109.
[28] Glycerine Producers′ Association. (1963). Physical properties of glycerine and its solutions. Glycerine Producers′ Association.
[29] Chang, C. W., Hsiung, T. L., Lui, C. P., & Tu, C. H. (2015). Densities, surface tensions, and isobaric vapor–liquid equilibria for the mixtures of 2-propanol, water, and 1, 2-propanediol. Fluid Phase Equilibria, 389, 28-40.
[30] George, J., & Sastry, N. V. (2003). Densities, dynamic viscosities, speeds of sound, and relative permittivities for water+ alkanediols (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-diol) at different temperatures. Journal of Chemical & Engineering Data, 48(6), 1529-1539.
[31] Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. II—Recent progress. IBM Journal of research and development, 11(6), 601-617.
[32] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
[33] Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168).
[34] Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31.
[35] Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2), 337-407.
[36] Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827.
[37] 蔡惟旭(2022)。以深度學習結合計算流體力學量測液體密度、黏度與表面張力係數。國立中央大學機械工程學系碩士論文,桃園市。
[38] Dhaliwal, S. S., Nahid, A. A., & Abbas, R. (2018). Effective intrusion detection system using XGBoost. Information, 9(7), 149.
[39] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830. |