博碩士論文 109324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:182 、訪客IP:3.145.191.111
姓名 廖一凡(Yi-Fan-Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用醋酸菌、酵母菌和乳酸菌對山苦瓜共發酵 探討其抑制黃嘌呤氧化活性之影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 痛風為世界大二代代謝疾病,指尿酸代謝異常,體內產生過量的尿酸,或
者尿酸排泄受阻,使得血中尿酸濃度上升,於是尿酸鈉鹽沉積在關節的滑囊液
中,引起急性或慢性關節腫脹疼痛及變形。近年來衛生福利部指出各項慢性病、
癌症、痛風有逐漸年輕化的趨勢,使的人們更加注重健康飲食,導致益生菌及
功能性食品的市場需求漸漸增加。
山苦瓜內含豐富的皂素、三萜類、酚類化合物等具有生物活性之物質,同
時具有抗氧化、抗糖尿病、抗腫瘤及抗痛風等諸多的藥理作用。微生物發酵工
程是從古自今食物保存的重要手法,同時可以改善食品原先風味,且藉由各菌
種間的相互作用增加活性效果。經研究證實利用醋酸菌發酵山苦瓜產品具有黃
嘌呤氧化抑制活性,類似於黃嘌呤抑制劑,可以抑制體內嘌呤經由尿酸代謝途
徑轉為尿酸累積而引起高尿酸症及痛風,達到預防、降低尿酸排泄的功效。
結合上述優點,本研究將以醋酸菌為主要菌種,並加入酵母菌及乳酸菌對
苦瓜進行共發酵,並探討單菌種、雙菌種及三菌種發酵對黃嘌呤氧化抑制活性
最適化的影響,同時也分析菌種的代謝情形、總多酚含量和 DPPH 去除自由基
活性,並觀察其關係。單一菌種醋酸菌的發酵可以達到 39.2%的抑制活性;雙
菌種酵母菌及醋酸菌的兩階段發酵有 46.9%的抑制活性;三菌種酵母菌、乳酸
菌及醋酸菌的兩階段發酵結果則是有最高的抑制活性 52.9%,同時其總多酚含
量及 DPPH 去除自由基活性皆有良好的表現。結合以上結果,酵母菌代謝酒精
可以提供醋酸菌作為生長時的必要養分,進而減少發酵成本,乳酸菌的加入藉
由菌種間良好的交互作用提高整體活性,因此山苦瓜的共發酵產品具有很大的
潛力應用於健康飲品產業當中。
摘要(英) Gout is the world′s second-generation metabolic disease. In recent years,that
various chronic diseases, cancer, and gout are gradually becoming younger, which
makes people pay more attention to healthy diet. Resulting in a gradual increase in
the market demand for probiotics and functional foods. Bitter gourd is rich in
saponins, triterpenes, phenolic compounds and other biologically active substances,
and has many pharmacological effects such as antioxidant, anti-diabetic, anti-tumor
and anti-gout. Microbial fermentation is an important method for food preservation.
At the same time, it can improve the original flavor of food, and increase the active
effect through the interaction between various bacteria. Confirmed by research that
the acetic acid bacteria fermented bitter gourd product has xanthine oxidation
inhibitory activity, which can prevent and reduce uric acid excretion. Combined with
the above advantages, this study will use acetic acid bacteria as the main strain, and
add yeast and lactic acid bacteria mixed-fermented bitter gourd, and explore the
optimal inhibition activity of xanthine oxidation by single-strain, double-strain and
triple-strain fermentation. At the same time, the metabolic status, total phenolic
content and DPPH scavenging activity were also analyzed, and the relationship was
observed. The fermentation of a single strain of acetic acid bacteria can achieve
39.2% inhibitory activity; the two-stage fermentation of double-strain yeast and
acetic acid bacteria has 46.9% inhibitory activity; the results of two-stage
fermentation of yeast, lactic acid bacteria and acetic acid bacteria It has the highest
inhibitory activity of 52.9%, and its total phenolic content and DPPH scavenging
activity both have good performance. Combined with the above results, the mixed
fermentation product of bitter gourd has a great potential applied to the healthy
beverage industry.
關鍵字(中) ★ 共發酵
★ 醋酸菌
★ 山苦瓜
★ 黃嘌呤氧化抑制活性
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 ix
表目錄 xiii
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 3
2-1 山苦瓜 3
2-1-1 山苦瓜的基本介紹 3
2-1-2 山苦瓜的成分 4
2-1-3 山苦瓜的生物活性及功效 8
2-2 高尿酸症、痛風 13
2-2-1 高尿酸症、痛風的基本介紹 13
2-2-2 痛風的治療方法 14
2-2-3 黃嘌呤氧化酶抑制活性基本介紹 15
2-3 菌種基本介紹 16
2-4 影響發酵工程之物化因子 20
2-4-1 培養基組成 20
2-4-2 溫度 21
2-4-3 氧氣 22
2-5 多菌種共發酵工程 22
2-6 山苦瓜發酵之研究 25
三、 材料與方法 28
3-1 實驗規劃 28
3-2 實驗材料 29
3-2-1 實驗菌株 29
3-2-2 實驗原料 31
3-2-3 實驗藥品 31
3-2-4 實驗儀器與設備 34
3-3 實驗方法 36
3-3-1 菌種保存及培養方式 36
3-3-2 液態發酵實驗 40
3-4 分析方法 45
3-4-1 菌種生長曲線 45
3-4-2 pH值分析 45
3-4-3 還原糖濃度分析 45
3-4-4 總多酚含量分析(Total phenolic compounds) 47
3-4-5 DPPH自由基清除能力分析(DPPH free radical scavenging activity) 48
3-4-6 酒精、醋酸及乳酸濃度分析 49
3-4-7 抑制黃嘌呤氧化酶測定 53
四、 結果與討論 56
4-1 菌種生長曲線 56
4-2 單菌種Gluconacetobacter sp.SC-01發酵山苦瓜最適化條件探討 59
4-2-1 酒精添加量對醋酸菌發酵之代謝能力影響 59
4-2-2 酒精添加量對醋酸菌發酵黃嘌呤氧化抑制活性的影響 61
4-2-3 酒精添加量對醋酸菌發酵總多酚含量及抗氧化活性影響 63
4-2-4 不同溫度對醋酸菌發酵之代謝能力影響 65
4-2-5 溫度對醋酸菌發酵黃嘌呤氧化抑制活性的影響 67
4-2-6 不同溫度對醋酸菌發酵總多酚含量與抗氧化活性影響 69
4-3 單菌種Saccharomyces cerevisiae發酵山苦瓜最適化接種時機探討 71
4-3-1 酵母菌好氧發酵之代謝能力 71
4-3-2 酵母菌厭氧發酵之代謝能力 72
4-3-3 酵母菌發酵山苦瓜產酸效果 73
4-3-4 酵母菌黃嘌呤氧化抑制活性效果 73
4-4 雙菌種Gluconacetobacter sp.及S. cerevisiae對山苦瓜共發酵最適化條件探討 75
4-4-1 第一階段好氧發酵及不同接種時機菌種的代謝能力 75
4-4-2 第一階段好氧發酵及不同接種時機黃嘌呤氧化活性之影響 77
4-4-3 第一階段厭氧發酵及不同接種時機菌種的代謝能力 79
4-4-4 第一階段厭氧發酵及不同接種時機黃嘌呤氧化活性之影響 81
4-4-5 雙菌種發酵對總多酚含量及抗氧化活性影響 82
4-5 三菌種Gluconacetobacter sp.、S. cerevisiae 及 L. plantarum 對山苦瓜共發酵最適條件探討 85
4-5-1 第一階段好氧發酵及不同接種時機菌種的代謝能力 85
4-5-2 第一階段好氧發酵及不同接種時機黃嘌呤氧化活性之影響 87
4-5-3 第一階段厭氧發酵及不同接種時機菌種的代謝能力 89
4-5-4 第一階段厭氧發酵及不同接種時機黃嘌呤氧化活性之影響 91
4-5-5 三菌種發酵對總多酚含量及抗氧化活性影響 92
4-6 三菌種Gluconacetobacter sp.、S. cerevisiae 及 L. buchneri 對山苦瓜共發酵黃嘌呤氧化抑制活性比較 95
4-7 不同發酵方法和菌種組合發酵山苦瓜之結論 96
五、 結論 97
參考文獻 99
參考文獻 [1] S. Jia, Mi. Shen, F. Zhang and J. Xie.“Recent Advances in Momordica charantia:Functional Components and Bioloical Activities, ”International Journal of Molecular Sciences, pp. 1-25, 2017.
[2] M. E. Haque ,M. B. Alam and M. S. Hossain ,“THE EFFICACY OF CUCURBITANE TYPE TRITERPENOIDS, GLYCOSIDES AND
PHENOLIC,”International Journal Pharmaceutical Science And Research Vol. 2(5), pp. 1135-1146, 2011.
[3] “ 衛 生 福 利 部 食 品 營 養 成 分 資 料 庫 , ” . Available: https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=616.
[4] Amy.C.Keller, J.Ma, A.Kavalier, K.He, Anne-Marie,B.Brillantes and E. J.
Kennelly, “Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro,” Phytomedicine, pp. 32-37, 2011.
[5] C.-H. Liu , M.-H. Yen , S.-F. Tsang , K.-H. Gan , H.-Y. Hsu , C.-N. Lin, “Antioxidant triterpenoids from the stems of Momordica charantia,” Food Chemistry 118, pp. 751-756, 2009.
[6] T. Akihisa,et.al “ Cucurbitane-Type Triterpenoids from the Fruits of Momordica charantia and Their Cancer Chemopreventive Effects,” Journal of Natural Products,70,8, pp. 1233-1239, 2007.
[7] O. Kenny, T.J. Smyth, C.M. Hewage, N.P. Brunton, “Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of 100 fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit,” Food Chemisty,Volume141,Issue 4, pp. 4295-4302, 2013.
[8] R. Horax, N. Hettlarachchy, and S. Islam, “Total Phenolic Contents and Phenolic acid Constiuents in 4 Varieties of Bitter Melons(Momordica charantia) and Antioxidant Activties of their Extracts, ” JOURNAL OF FOOD SCIENCE, pp. 275-280, 2005.
[9] S. Begum, M. Ahmed, B. S. Siddiqui, A. Khan, Z. S. Saify and M. Arif, “Triterpenes, a sterol and a monocyclic alcohol from Momordica charantia,”Phytochemistry, Vol. 44, No. 71, pp. 1313-1320, 1997.
[10] S Saeed, P Tariq “Antibacterial activities of Mentha piperita, Pisum sativum and Momordica charantia,” Pakistan Journal of Botany, pp. 997-1001, 2005.
[11] E. F. Fang , C. Z. Y. Zhang , T. B. Ng , J. H. Wong , W. L Pan , X. J. Ye , Y. S.
Chan, and W. P. Fong, “Momordica Charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal
carcinoma cells in vitro and in vivo,” Cancer Prevention Research, pp. 109-121, 2012.
[12] P. Chaturvedi, S. George, “Momordica charantia Maintains Normal Glucose
Levels and Lipid Profiles and Prevents Oxidative Stress in Diabetic Rats Subjected to Chronic Sucrose Load,”JOURNAL OF MEDICINAL FOOD, pp. 520-527, 2010.
[13] K.W. Lin, S.C.Yang and C.N. Lin, “Antioxidant constituents from the stems and fruits of Momordica charantia,” Food Chemistry 127, pp. 609-614, 2010.
[14] B.Shan, J.H. Xie, J.H. Zhu and Y. Peng, “Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its
101 antioxidant activity,” Food and Bioproducts Processing Volume90,Issue 3, pp. 579-587, 2012.
[15] L.-T. N. Shu-Jing Wua, “Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan,” LWT 41, pp. 323-330, 2007.
[16] I. R. Alsultanee, M. J. Ewadh, M. F. Mohammed, “Novel natural anti gout medication extract from Momdica Charantia,” Journal of Natural Sciences
Research vol. 4, no. 17, pp. 16-23, 2014.
[17] E Roddy, M. Doherty, “Epidemiology of gout,” Arthritis Research & Therapy, pp. 1-11, 2010.
[18] H.K. Choi, D.B. Mount, A.M. Reginato, “ Pathogenesis of Gout, ”American College of Physicians , pp. 499-515, 2005.
[19] K. Iseki, Y. Ikemiya, T. Inoue, C. Iseki, K. Kinjo, and S. Takishita, “Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort,” American Journal of Kidney Diseases, vol. 44, no. 4, pp. 642-650, 2004.
[20] 謝永宏、楊東寶、陳俊源, “高尿酸血症與痛風之介紹及其藥物治療,”The Journal of Pharmacy, pp. 145-152, 2008.
[21] F. Borges, E. Fernandes, F. Roleira, “Progress Towards the Discovery of
Xanthine Oxidase Inhibitors,” Current Medicinal Chemistry , 9, pp. 195-217, 2002.
[22] 陳曉菁, “傳統發酵食品-釀造醋,” 台東區農業改良場技術專刊, pp. 4-5, 2008.
[23] K. Matsushita , H. Toyama, N. Tonouchi , A. O.-K. Editors, “Acetic Acid 102 Bacteria,” Ecology and Physiology, pp. 1-21, 2016.
[24] P. Raspor and Duˇsan Goranoviˇc, “Biotechnological Applications of Acetic Acid Bacteria,” Critical reviews in biotechnology, pp. 101-119, 2008.
[25] J. D. Roos and L. D. Vuyst, “Acetic acid bacteria in fermented foods and beverages,” Current Opinion in Biotechnology , 49, pp. 115-119, 2018.
[26] N. H. Budak, E. Aykin, A. C. Seydim, A. K. Greene, and Z. B. Guzel-Seydim, “Functional Properties of Vinegar,” Institute of Food Technologist Vol. 79, Nr. 5, pp. 757-761, 2014.
[27] R.J. Chen et al. “Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety
study,” Journal of Food and Drug Analysis, vol. 25, no. 3, pp. 597-606, 2017.
[28] Y.H. Pyo, J.Y. Hwang, K.S. Seong, “Hypouricemic and antioxidant effects of soy vinegar extracts in hyperuricemic mice,” Journal of Medicinal Food, vol. 21, no. 12, pp. 1299-1305, 2018.
[29] S. Dashko, N. Zhou, C. Compagno, “Why, when, and how did yeast evolve alcoholic fermentation?,” FEMS Yeast Research, Vol 14, I 6, pp. 826-832.
[30] J.-M. Salmon, “Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications,” LWT vol 39, pp. 959-965, 2005.
[31] M. J. Torija, N. Roze`s, M. Poblet, J. M. Guillamo´n, A. Mas, “Effects of fermentation temperature on the strain,” International Journal of Food Microbiology vol 80, pp. 47-53, 2002.
[32] T. Oliveiraa , E. Ramalhosab , L. Nunesb , J. A. Pereirab , E. Collaa , E. L. 103
Pereirab, “ Probiotic potential of indigenous yeasts isolated during the fermentation of,” Innovative Food Science and Emerging Technologies vol 44, pp. 167-172, 2017.
[33] R. Rakowska , A. Sadowska, E. Dybkowska, F. Świderski, “Spent Yeasts As Natual Source Of Functional,” Rocz Panstw Zakl Hig vol 68(2), pp. 115-121, 2017.
[34] K.J. Verstrepen et al. “Flavor-Active Esters: Adding Fruitiness to Beer,”Journal of Bioscience and Bioengineering Vol 96, pp. 110-118, 2003.
[35] K. Adamberg, S. Kask, T.M. Laht, T. Paalme, “The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study,” International Journal of Food Microbiology Vol 85, pp. 171-183, 2003.
[36] C.P. Barros et al. “Paraprobiotics and postbiotics: concepts and potential applications in dairy products,” Current Opinion in Food Science Vol 32, pp. 1-8, 2020.
[37] N.K. Lee, H.D. Paik, “ Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds,” J. Microbiol. Biotechnol, pp. 869-877, 2017.
[38] S.Ting et al. “Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation,” Food Control Vol 41, pp. 1-6, 2014.
[39] S.J. Chen et al. “Novel acetobacter and gluconacetobacter strains and their metabolites for use in inhibiting xanthine oxidase,” United States Patent
Application Publication, 2016.
[40] S. Ohmori, H. Masai, K. Arima and T. Beppu, “Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high 104
temperature,” Agricultural and Biological Chemistry Vol 44, pp. 2901-2906, 1980.
[41] 梅祖傑, “供氧方式對對啤酒酵母發酵菌體與酒精生產影響,” pp. 1-64, 2014.
[42] E.J. Smid, C. Lacroix, “Microbe–microbe interactions in mixed culture
food fermentations,” Current Opinion in Biotechnology 2013,Vol 24, pp. 148-154, 2013.
[43] I. Rosi, G. Fia, V. Canuti, “Influence of different pH values and inoculation time on the growth and malolactic activity of a strain of Oenococcus oeni,”Australian Journal of Grape and Wine Research,Vol 9, pp. 194-199, 2003.
[44] S. A. Khan et al. “Co-culture submerged fermentation by lactobacillus and yeast more effectively improved the profiles and bioaccessibility of phenolics in extruded brown rice than single-culture fermentation, ” Food Chemistry ,Vol 326, p. 126985, 2020.
[45] H. Gao et al. “Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile,” Food Bioscience ,Vol 29, pp. 62-72, 2019.
[46] 劉庭萱, “探討利用 Lactobacillus plantarum 發酵 Momordica charantia
山苦瓜對其降血糖及其他生物活性之影響,” 國立中央大學化材所, 2020.
[47] 彭一芸, “探討醋酸菌及酵母菌共發酵對山苦瓜抑制黃嘌呤氧化活性之影響,” 2021.
[48] Z. Wang et al. “ Mixed culture of Saccharomyces cerevisiae and Acetobacter,” Biochemical Engineering Journal, vol. 79, pp. 41-45, 2013. 105
[49] “ Estimation of Reducing Sugars by the Dinitro Salicylic Acid (DNS)
Method,Available:https://biocyclopedia.com/index/biotechnology_methods/biochemistry/estimation_of_reducing_sugars_by_the_dinitro_salicylic_acid_dns_method.php.
[50] V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, “Analysis of Total
Phenols and Other Oxidation,” METHODS IN ENZYMOLOGY, VOL. 299, pp. 152-178, 1999.
[51] G. Marinova, V. Batchvarov, “EVALUATION OF THE METHODS FOR DETERMINATION,” Bulgarian Journal of Agricultural Science, 17 (No 1), pp. 11-24, 2011.
[52] T. Yamaguchi, “HPLC method for evaluation of the free radical-scavenging
activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl, ”
Biosci.Biotechnol.Biochem.,62(6), pp. 1201-1204, 1998.
[53] P. Cos, “Structure−Activity Relationship and Classification of Flavonoids as Inhibitors of Xanthine Oxidase and Superoxide Scavengers,” Journal of Natural Products, pp. 71-76, 1998.
[54] E. Apostolidis , Y.-I. Kwon , R. Ghaedian and K. Shetty, “Fermentation of Milk and Soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus Enhances Functionality for Potential Dietary Management of Hyperglycemia and Hypertension,” Food Biotechnology ,Vol 21, pp. 217-236, 2007.
[55] O.I. Aruoma, S.L. Cuppett, Antioxidant methodology: in vivo and in vitro concepts, 1997.
[56] P. M. Izquierdo Cañasab et al. “ Influence of inoculation time of an autochthonous selected malolactic bacterium on volatile and sensory profile of
106 Tempranillo and Merlot wines, ” International Journal of Food Microbiology ,Vol156, pp. 245-254, 2012. 5
[57] R. J. G. et.al, “Acetic Acid Bacteria in the Food Industry: Systematics,
Characteristics and Applications,” Food Technol Biotechnol, Vol56, pp. 139-151, 2018.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明