參考文獻 |
1. Hyun, K.H., et al., Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method. Journal of Power Sources, 2015. 286: p. 197-203.
2. Rahim, M.A., et al., Metal ion-enriched polyelectrolyte complexes and their utilization in multilayer assembly and catalytic nanocomposite films. Langmuir, 2012. 28(22): p. 8486-95.
3. Mentbayeva, A., et al., Polymer-metal complexes in polyelectrolyte multilayer films as catalysts for oxidation of toluene. Langmuir, 2012. 28(32): p. 11948-55.
4. Weng, D., et al., Polymeric Complex-Based Transparent and Healable Ionogels with High Mechanical Strength and Ionic Conductivity as Reliable Strain Sensors. ACS Appl Mater Interfaces, 2020. 12(51): p. 57477-57485.
5. Wang, T., et al., A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Advanced Functional Materials, 2018. 28(7).
6. Ibrahim, G.P.S., et al., Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chemical Engineering Journal, 2018. 353: p. 425-435.
7. Zhang, L., et al., Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chemical Engineering Journal, 2019. 378.
8. Wang, J.-W. and Y.-M. Kuo, Preparation and adsorption properties of chitosan–poly(acrylic acid) nanoparticles for the removal of nickel ions. Journal of Applied Polymer Science, 2008. 107(4): p. 2333-2342.
9. Shen, J.N., et al., Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation. Int J Mol Sci, 2013. 14(2): p. 3621-38.
10. Babiker, D.M.D., et al., Hydrogen-bonded methylcellulose/poly(acrylic acid) complex membrane for oil-water separation. Surface and Coatings Technology, 2019. 367: p. 49-57.
11. Hu, C., et al., Pervaporation performance of chitosan–poly(acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution. Separation and Purification Technology, 2007. 55(3): p. 327-334.
12. Shibata, M., Y. Kimura, and D. Yaginuma, Thermal properties of novel supramolecular polymer networks based on poly(4-vinylpyridine) and disulfonic acids. Polymer, 2004. 45(22): p. 7571-7577.
13. Chollakup, R., et al., Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)−Poly(allylamine) Solutions. Macromolecules, 2010. 43(5): p. 2518-2528.
14. Huang, X. and S. Goh, Interpolymer complexes through hydrophobic interactions: C60-end-capped poly (ethylene oxide)/poly (methacrylic acid) complexes. Macromolecules, 2000. 33(23): p. 8894-8897.
15. Fang, X., et al., Dynamic Hydrophobic Domains Enable the Fabrication of Mechanically Robust and Highly Elastic Poly(vinyl alcohol)-Based Hydrogels with Excellent Self-Healing Ability. ACS Materials Letters, 2020. 2(7): p. 764-770.
16. Hayes, W. and B.W. Greenland, Donor–Acceptor π–π Stacking Interactions: From Small Molecule Complexes to Healable Supramolecular Polymer Networks, in Supramolecular Polymer Networks and Gels. 2015. p. 143-166.
17. Son, S.Y., et al., Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules, 2018. 51(7): p. 2572-2579.
18. Liu, X., et al., Healable and Recyclable Polymeric Materials with High Mechanical Robustness. ACS Materials Letters, 2022. 4(4): p. 554-571.
19. Luo, Y. and Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol, 2014. 64: p. 353-67.
20. Kim, S.H., et al., Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release, 2008. 129(2): p. 107-16.
21. Zhao, L., et al., Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials (Basel), 2020. 10(5).
22. Khutoryanskiy, V.V. and G. Staikos, Hydrogen-bonded interpolymer complexes: formation, structure and applications. 2009: World Scientific.
23. Chun, M.K., P. Bhusal, and H.K. Choi, Application of Carbopol/PVP interpolymer complex to prepare mucoadhesive floating granule. Arch Pharm Res, 2013. 36(6): p. 745-51.
24. Vasi, A.M., et al., Poly(acrylic acid)-poly(ethylene glycol) nanoparticles designed for ophthalmic drug delivery. J Pharm Sci, 2014. 103(2): p. 676-86.
25. Wang, Y., et al., Transparent, Healable Elastomers with High Mechanical Strength and Elasticity Derived from Hydrogen-Bonded Polymer Complexes. ACS Appl Mater Interfaces, 2017. 9(34): p. 29120-29129.
26. Swift, T., C.C. Seaton, and S. Rimmer, Poly(acrylic acid) interpolymer complexes. Soft Matter, 2017. 13(46): p. 8736-8744.
27. Mun, G.A., et al., pH-effects in the complex formation of polymers I. Interaction of poly(acrylic acid) with poly(acrylamide). European Polymer Journal, 2003. 39(8): p. 1687-1691.
28. Khutoryanskiy, V.V., et al., pH effects in the complex formation and blending of poly (acrylic acid) with poly (ethylene oxide). Langmuir, 2004. 20(9): p. 3785-3790.
29. Nurkeeva, Z.S., et al., pH effects in the formation of interpolymer complexes between poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions. Eur Phys J E Soft Matter, 2003. 10(1): p. 65-8.
30. Gadwal, I., A Brief Overview on Preparation of Self-Healing Polymers and Coatings via Hydrogen Bonding Interactions. Macromol, 2020. 1(1): p. 18-36.
31. Han, W., et al., Acid-Resistance and Self-Repairing Supramolecular Nanoparticle Membranes via Hydrogen-Bonding for Sustainable Molecules Separation. Adv Sci (Weinh), 2021. 8(23): p. e2102594.
32. Zhang, Y., et al., Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–Poly(acrylic acid) Complexes. Macromolecules, 2016. 49(19): p. 7563-7570.
33. Du, Y., et al., Water-Triggered Self-Healing Coatings of Hydrogen-Bonded Complexes for High Binding Affinity and Antioxidative Property. Advanced Materials Interfaces, 2016. 3(15).
34. Khutoryanskiy, V.V., et al., pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions. Polymer International, 2004. 53(9): p. 1382-1387.
35. Chen, C., et al., Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv, 2022. 12(13): p. 7689-7711.
36. Yan, W., et al., Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci, 2020. 284: p. 102267.
37. Fraga-Corral, M., et al., Technological Application of Tannin-Based Extracts. Molecules, 2020. 25(3).
38. Ibrahim, A., A.Z. Yaser, and J. Lamaming, Synthesising tannin-based coagulants for water and wastewater application: A review. Journal of Environmental Chemical Engineering, 2021. 9(1).
39. Nam, H.G., et al., Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. Soft Matter, 2019. 15(4): p. 785-791.
40. Gaikwad, A., et al., Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity. ACS Appl Mater Interfaces, 2020. 12(9): p. 11026-11035. |