博碩士論文 109324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.135.217.182
姓名 林筠庭(Yun-Ting Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 將通用誘導多能型幹細胞在不同的細胞外基質的塗層表面上進行重編程、增值和分化
(Reprogramming, Proliferation and Differentiation of Universal Induced Pluripotent Stem Cells on Different ECM-coated Surface)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-2以後開放)
摘要(中) 幹細胞是用於細胞治療的有吸引力的細胞來源。多能幹細胞 (PSC),例如胚胎幹細胞 (ESC) 和誘導多能幹細胞 (iPSC),有可能分化成源自三個胚層的任何細胞類型。然而,人 PSC (hPSCs) 治療的缺點是,應準備和儲存大量不同類型的具有特定人白細胞抗原 (HLA) I 類和 II 類類型的 hPSCs 用於患者治療。最近,通過誘導某些多能性相關基因的“強制”表達,從成人體細胞中獲得類似於 hESCs 的人類 PSCs (hPSCs),這被稱為 iPSCs。然而,成熟的人類iPSCs(hiPSCs)的產生需要時間,而且hiPSCs需要通過測試來驗證沒有基因異常,也沒有病毒或其他病原體的污染,導致hiPSCs治療的成本很高。為了降低製備與特定患者的 HLA 類型相匹配的 hESC 和 hiPSC 的高成本,有必要開發不表達或較少表達 HLA Ia 類(HLA-A、-B 和 -C)和 II 類的 hPSC (通用或低免疫原性 hPSC)甚至在分化成特定細胞譜係後。在這裡,我報告了在沒有基因編輯的情況下從四種人類羊水來源中生成通用 hiPSCs 的方法,這些羊水是在幾種細胞外基質 (ECM) 塗層培養皿上培養的。
摘要(英) Stem cells are an attractive source of cells for cell therapy. Pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to differentiate into any of the cell types derived from the three germ layers. However, the disadvantage of human PSC (hPSCs) therapy is that large numbers of different types of hPSCs with specific human leukocyte antigen (HLA) class I and class II types should be prepared and banked for patient therapy. Recently, human PSCs (hPSCs) similar to hESCs were obtained from adult somatic cells by inducing "forced" expression of certain pluripotency-related genes, which is called as iPSCs. However, it takes time to generate mature human iPSCs (hiPSCs), and hiPSCs require testing to verify that there is no gene abnormality and no contamination with viruses or other pathogens, which leads to a high cost of hiPSC therapy. To reduce the high cost of preparation for hESCs and hiPSCs that match the HLA types of specific patients, it is necessary to develop hPSCs that do not or less express HLA class Ia (HLA-A, -B, and -C) and class II (universal or hypoimmunogenic hPSCs) even after differentiation into specific lineages of cells. Here I report generation method of universal hiPSCs from four sources of human amniotic fluids without gene editing, which were cultured on several extracellular matrix (ECM)-coated dishes.
關鍵字(中) ★ 再生醫學
★ 重新編程
★ 通用細胞
★ 誘導多能幹細胞
★ 人類白血球抗原第一分子抗原
★ 細胞外基質
關鍵字(英) ★ Regenerative medicine
★ reprogramming
★ universal cell
★ induced pluripotent stem cells
★ HLA class-Ia
★ extracellular matrix
論文目次 Abstract i
摘要 ii
Index of Content iii
Index of Figures vi
Index of Tables xi
Chapter 1. Introduction 1
1-1 Stem cell application in regenerative medicine 1
1-2 Stem cells 3
1-2-1 Human pluripotent stem cells (hPSCs) 4
1-2-2 Characterization of hPSCs 6
1-2-3 Human mesenchymal stem cells (hMSCs) 9
1-2-4 Characterization of hMSCs 10
1-2-5 Therapeutic potential of hMSCs 11
1-3 Human amniotic fluid stem cells (hAFSCs) 12
1-4 Extracellular matrices (ECMs) 13
1-4-1 Matrigel 16
1-4-2 Laminin 16
1-5 Human peripheral blood mononuclear cells (hPBMCs) 17
1-6 Universal hPSCs 19
1-7 Differentiation of hPSCs into MSCs 21
1-7 Goal of this study 30
Chapter 2. Materials and Method 32
2-1 Materials 32
2-1-1 Cell line 32
2-1-2 Culture medium 32
2-1-3 Passage processing medium 33
2-1-4 Human induced pluripotent stem cells (hiPSCs) generation 34
2-1-5 Human mesenchymal stem cells (hMSCs) 34
2-1-6 Isolation of mononuclear cells 35
2-1-7 Isolation of CD8+ T cells and Natural Killer Cells 35
2-1-8 Live and Dead staining 35
2-1-9 Embryoid body (EB) formation 35
2-1-10 LDH cytotoxicity assay kit 36
2-1-11 Other components 36
2-1-12 ECM-coated dish for cell culture 36
2-1-13 Differentiation medium 37
2-1-14 Characterization of stem cells 38
2-1-15 The chemicals in oligopeptide-grafted dish 42
2-2 Experimental instruments 44
2-3 Experimental methods 44
2-3-1 Preparation of culture medium for cell cultivation 44
2-3-2 Generation and isolation of stem cell lines 48
2-3-3 Cultivation and passage method of stem cells 52
2-3-4 Cell number measurements 55
2-3-5 Preparation of peptide-grafted hydrogels 56
2-3-6 Characterization of hPSCs 57
2-3-7 Characterization of hMSCs 61
2-3-8 Isolation of allogenic mononuclear cells 62
2-3-9 Live and Dead staining of the cells 66
2-3-9 Lactic dehydrogenase (LDH) cytotoxicity assay 66
Chapter 3. Results and Discussion 68
3-1 Immune marker expression of several human stem cells 68
3-2 The morphology of mixing hAFSCs 69
3-3 Reprogramming and cultivation of hAFSCs-derived hiPSCs 70
3-3-1 Generation and isolation of hAFSCs-derived hiPSCs 71
3-3-2 Pluripotency analysis of hAFSCs-derived hiPSCs 74
3-3-3 The morphology of hAFSCs-derived hiPSCs on different ECM protein-coated dishes 76
3-3-4 HLA class Ia, class II, PD-L1, HLA-G, CD47, and SSEA 4 expression of universal hiPSCs on different ECM protein-coated dishes 78
3-4 The tendency of immunomodulatory factor expression and evaluation of the immunogenic reaction using mononuclear cells 79
3-4-1 Evaluation of the immunogenic reaction using allogeneic mononuclear cells 80
3-4-2 HLA class Ia, class II, PD-L1, HLA-G, and CD47 expression of hESCs, hiPSCs, hAFSCs, and universal hiPSCs 82
3-5 Mesenchymal stem cells (MSCs) differentiation 89
3-5-1 The morphologies of hPSCs-derived hMSCs 89
3-5-2 Identification of the hPSCs-derived hMSCs from MSC surface marker expression analysis using flow cytometry 92
3-5-3 Evaluation of the immunogenic reaction using allogeneic mononuclear cells 94
3-5-4 HLA class Ia, class II, PD-L1, HLA-G, and CD47 expression of hMSCs derived from universal hiPSCs (mix-4), hiPSCs (HPS0077) and hESCs (H9) 96
Chapter 4 Conclusion 105
References 106
參考文獻 1. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. Regenerative Medicine, 2008. 3(1): p. 1-5.
2. Mahla, R.S., Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. International Journal of Cell Biology, 2016. 2016: p. 1-24.
3. Flomenberg, N., Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood, 2004. 104(7): p. 1923-1930.
4. Petersdorf, E.W., Risk assessment in haematopoietic stem cell transplantation: Histocompatibility. Best Practice & Research Clinical Haematology, 2007. 20(2): p. 155-170.
5. Gratwohl, A., et al., Risk score for outcome after allogeneic hematopoietic stem cell transplantation. Cancer, 2009. 115(20): p. 4715-4726.
6. Karussis, D., et al., Safety and Immunological Effects of Mesenchymal Stem Cell Transplantation in Patients With Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010. 67(10).
7. Jagasia, M., et al., Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood, 2012. 119(1): p. 296-307.
8. Wu, Y.-P., et al., Stem Cells for the Treatment of Neurodegenerative Diseases. Molecules, 2010. 15(10): p. 6743-6758.
9. Moradi, S.Z., et al., Regenerative Medicine and Angiogenesis; Focused on Cardiovascular Disease. Advanced Pharmaceutical Bulletin, 2021.
10. Amit, M., et al., Feeder Layer- and Serum-Free Culture of Human Embryonic Stem Cells1. Biology of Reproduction, 2004. 70(3): p. 837-845.
11. Rajabzadeh, N., E. Fathi, and R. Farahzadi, Stem cell-based regenerative medicine. Stem Cell Investigation, 2019. 6: p. 19-19.
12. Fathi, E. and R. Farahzadi, Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview. Brazilian Archives of Biology and Technology, 2016. 59(0).
13. Menon, S., et al., An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. International Journal of Molecular Sciences, 2016. 17(1): p. 141.
14. Hackett, C.H. and L.A. Fortier, Embryonic Stem Cells and iPS Cells: Sources and Characteristics. Veterinary Clinics of North America: Equine Practice, 2011. 27(2): p. 233-242.
15. Volarevic, V., et al., Human stem cell research and regenerative medicine--present and future. British Medical Bulletin, 2011. 99(1): p. 155-168.
16. McKnight, C.L., et al., Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? International Journal of Molecular Sciences, 2021. 22(14): p. 7730.
17. Yang, L., et al., A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020. 27(1): p. 125-136.e7.
18. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Computational and Structural Biotechnology Journal, 2015. 13: p. 75-84.
19. Gepstein, L., Derivation and Potential Applications of Human Embryonic Stem Cells. Circulation Research, 2002. 91(10): p. 866-876.
20. Lo, B. and L. Parham, Ethical Issues in Stem Cell Research. Endocrine Reviews, 2009. 30(3): p. 204-213.
21. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage Differentiation from Human Embryonic Stem Cell Lines. STEM CELLS, 2001. 19(3): p. 193-204.
22. Takahashi, K. and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006. 126(4): p. 663-676.
23. Takahashi, K., et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007. 131(5): p. 861-872.
24. Chang, E.-A., et al., Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases. Journal of Korean Neurosurgical Society, 2019. 62(5): p. 493-501.
25. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
26. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in polymer science, 2014. 39(7): p. 1348-1374.
27. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
28. Kato, R., et al., Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control. Scientific reports, 2016. 6(1): p. 1-12.
29. Jia, L., et al., Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots. Chemical communications, 2010. 46(38): p. 7166-7168.
30. Ullah, I., Raghavendra, and Gyu, Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 2015. 35(2): p. 1-18.
31. Garikipati, V.N.S., et al., Isolation and characterization of mesenchymal stem cells from human fetus heart. PLOS ONE, 2018. 13(2): p. e0192244.
32. Baghaei, K., et al., Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterology and hepatology from bed to bench, 2017. 10(3): p. 208-213.
33. Haasters, F., et al., Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 2009. 214(5): p. 759-767.
34. Fan, X.-L., et al., Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cellular and molecular life sciences, 2020. 77(14): p. 2771-2794.
35. Noort, W., et al., Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. Journal of cellular and molecular medicine, 2012. 16(8): p. 1827-1839.
36. Ferreira, J.R., et al., Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Frontiers in immunology, 2018. 9: p. 2837.
37. Müller, L., et al., Immunomodulatory properties of mesenchymal stromal cells: An update. Frontiers in Cell and Developmental Biology, 2021: p. 179.
38. Chamberlain, G., et al., Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem cells, 2007. 25(11): p. 2739-2749.
39. Klyushnenkova, E., et al., T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. Journal of biomedical science, 2005. 12(1): p. 47-57.
40. Lee, R.H., et al., Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular physiology and biochemistry, 2004. 14(4-6): p. 311-324.
41. Madonna, R., Y.-J. Geng, and R. De Caterina, Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arteriosclerosis, thrombosis, and vascular biology, 2009. 29(11): p. 1723-1729.
42. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-1822.
43. Casiraghi, F., et al., Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. The Journal of Immunology, 2008. 181(6): p. 3933-3946.
44. Jarvinen, L., et al., Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. The Journal of Immunology, 2008. 181(6): p. 4389-4396.
45. Chan, J.L., et al., Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood, 2006. 107(12): p. 4817-4824.
46. Stagg, J., et al., Interferon-γ-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 2006. 107(6): p. 2570-2577.
47. Ferreira, J.R., et al., Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 2018. 9.
48. Connick, P., et al., Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. The Lancet Neurology, 2012. 11(2): p. 150-156.
49. Götherström, C., et al., Pre‐and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: A two‐center experience. 2014, Oxford University Press. p. 255-264.
50. Karantalis, V., et al., Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circulation research, 2014. 114(8): p. 1302-1310.
51. Rushkevich, Y.N., et al., The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in belarus. Bulletin of Experimental Biology and Medicine, 2015. 159(4): p. 576-581.
52. Thakkar, U.G., et al., Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow–derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy, 2015. 17(7): p. 940-947.
53. Vega, A., et al., Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation, 2015. 99(8): p. 1681-1690.
54. Fernández, O., et al., Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PloS one, 2018. 13(5): p. e0195891.
55. Van Velthoven, C.T., et al., Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke, 2013. 44(5): p. 1426-1432.
56. Jones, J., et al., Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Molecular Therapy, 2015. 23(1): p. 130-138.
57. Soria, B., et al., Human mesenchymal stem cells prevent neurological complications of radiotherapy. Frontiers in cellular neuroscience, 2019. 13: p. 204.
58. Hmadcha, A., et al., Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2020. 8.
59. Elliott, M.J., et al., Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. The Lancet, 2012. 380(9846): p. 994-1000.
60. Zani, A., et al., Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut, 2014. 63(2): p. 300-309.
61. De Coppi, P., et al., Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 2007. 25(1): p. 100-6.
62. Carraro, G., et al., Human Amniotic Fluid Stem Cells Can Integrate and Differentiate into Epithelial Lung Lineages. Stem Cells, 2008. 26(11): p. 2902-2911.
63. Srivastava, M., N. Ahlawat, and A. Srivastava, Amniotic Fluid Stem Cells: A New Era in Regenerative Medicine. The Journal of Obstetrics and Gynecology of India, 2018. 68(1): p. 15-19.
64. Yue, B., Biology of the extracellular matrix: an overview. J Glaucoma, 2014. 23(8 Suppl 1): p. S20-3.
65. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40.
66. Chen, K.G., et al., Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 2014. 14(1): p. 13-26.
67. Rozario, T. and D.W. Desimone, The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, 2010. 341(1): p. 126-140.
68. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. Journal of Cell Science, 2010. 123(24): p. 4195-4200.
69. Bonnans, C., J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 2014. 15(12): p. 786-801.
70. Walker, C., E. Mojares, and A. Del Río Hernández, Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences, 2018. 19(10): p. 3028.
71. Kleinman, H.K. and G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005. 15(5): p. 378-86.
72. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-90.
73. Themistocleous, G., et al., Three-dimensional type I collagen cell culture systems for the study of bone pathophysiology. In vivo, 2004. 18(6): p. 687-696.
74. Kleinman, H.K., R.J. Klebe, and G.R. Martin, Role of collagenous matrices in the adhesion and growth of cells. The Journal of cell biology, 1981. 88(3): p. 473-485.
75. Benton, G., et al., Advancing science and technology via 3D culture on basement membrane matrix. Journal of cellular physiology, 2009. 221(1): p. 18-25.
76. Kleinman, H.K., et al., Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 1982. 21(24): p. 6188-6193.
77. Kleinman, H.K. and G.R. Martin, Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 2005. 15(5): p. 378-386.
78. Chae, M., et al., 3D bioprinting adipose tissue for breast reconstruction, in 3D Bioprinting for Reconstructive Surgery. 2018, Elsevier. p. 305-353.
79. Kawaguchi, N., et al., De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A, 1998. 95(3): p. 1062-6.
80. Walton, R.L., E.K. Beahm, and L. Wu, De novo adipose formation in a vascularized engineered construct. Microsurgery, 2004. 24(5): p. 378-84.
81. Domogatskaya, A., S. Rodin, and K. Tryggvason, Functional diversity of laminins. Annual review of cell and developmental biology, 2012. 28: p. 523-553.
82. Rodin, S., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications, 2014. 5(1): p. 3195.
83. Aumailley, M., et al., A simplified laminin nomenclature. Matrix biology, 2005. 24(5): p. 326-332.
84. Rodin, S., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature communications, 2014. 5(1): p. 1-13.
85. Rodin, S., et al. Clonal derivation and clonal survival of human embryonic stem cells on human laminin-521-based matrix in xeno-free and chemically defined environment. in Molecular Biology of the Cell. 2012. AMER SOC CELL BIOLOGY 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA.
86. Vuoristo, S., et al., A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation. PLoS One, 2013. 8(10): p. e76205.
87. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and biophysical research communications, 2008. 375(1): p. 27-32.
88. Albalushi, H., et al., Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. Stem Cells International, 2018. 2018: p. 1-9.
89. Kleiveland, C.R., Peripheral Blood Mononuclear Cells. 2015, Springer International Publishing. p. 161-167.
90. Corkum, C.P., et al., Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC immunology, 2015. 16(1): p. 1-18.
91. Acosta Davila, J.A. and A. Hernandez De Los Rios, An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma gondii and Other Apicomplexan Parasites. Frontiers in Cellular and Infection Microbiology, 2019. 9.
92. Li, H., et al., The first circulating tumor cell detection technique from frozen PBMCs. 2017, AACR.
93. Riolobos, L., et al., HLA engineering of human pluripotent stem cells. Molecular Therapy, 2013. 21(6): p. 1232-1241.
94. Feng, Q., et al., Scalable generation of universal platelets from human induced pluripotent stem cells. Stem cell reports, 2014. 3(5): p. 817-831.
95. Karabekian, Z., et al., HLA class I depleted hESC as a source of hypoimmunogenic cells for tissue engineering applications. Tissue Engineering Part A, 2015. 21(19-20): p. 2559-2571.
96. Ye, Q., et al., Generation of universal and hypoimmunogenic human pluripotent stem cells. Cell Proliferation, 2020. 53(12): p. e12946.
97. Deuse, T., et al., Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 2019. 37(3): p. 252-258.
98. Han, X., et al., Generation of hypoimmunogenic human pluripotent stem cells. Proceedings of the National Academy of Sciences, 2019. 116(21): p. 10441-10446.
99. Xu, H., et al., Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell stem cell, 2019. 24(4): p. 566-578. e7.
100. Gornalusse, G.G., et al., HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nature biotechnology, 2017. 35(8): p. 765-772.
101. Torikai, H., et al., Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Scientific reports, 2016. 6(1): p. 1-11.
102. Torikai, H., et al., Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood, The Journal of the American Society of Hematology, 2013. 122(8): p. 1341-1349.
103. Jang, Y., et al., Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & molecular medicine, 2019. 51(1): p. 1-11.
104. Rong, Z., et al., An effective approach to prevent immune rejection of human ESC-derived allografts. Cell stem cell, 2014. 14(1): p. 121-130.
105. Zhao, H.-X., et al., Enhanced immunological tolerance by HLA-G1 from neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs). Cellular Physiology and Biochemistry, 2017. 44(4): p. 1435-1444.
106. Mackay, I., et al., The HLA system. New England Journal of Medicine, 2000. 343(10): p. 702-709.
107. Ye, Q., et al., Generation of universal and hypoimmunogenic human pluripotent stem cells. Cell Proliferation, 2020. 53(12).
108. Robinson, J., R. Lopez, and P. Parham, Marsh SGE. The IMGT/HLA database. Nucleic Acids Res, 2009. 37: p. 1013-1017.
109. Abdal Dayem, A., et al., Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. International Journal of Molecular Sciences, 2019. 20(8): p. 1922.
110. Kim, H.J. and J.-S. Park, Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Development & reproduction, 2017. 21(1): p. 1-10.
111. Tran, N.T., et al., Efficient differentiation of human pluripotent stem cells into mesenchymal stem cells by modulating intracellular signaling pathways in a feeder/serum-free system. Stem Cells Dev, 2012. 21(7): p. 1165-75.
112. Barberi, T., et al., Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS medicine, 2005. 2(6): p. e161.
113. Olivier, E.N., A.C. Rybicki, and E.E. Bouhassira, Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem cells, 2006. 24(8): p. 1914-1922.
114. Trivedi, P. and P. Hematti, Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Experimental hematology, 2008. 36(3): p. 350-359.
115. Vodyanik, M.A., et al., A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell stem cell, 2010. 7(6): p. 718-729.
116. Trivedi, P. and P. Hematti, Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. Experimental hematology, 2007. 35(1): p. 146-154.
117. Hajizadeh-Saffar, E., et al., Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Scientific reports, 2015. 5(1): p. 1-10.
118. Hwang, N.S., et al., In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proceedings of the National Academy of Sciences, 2008. 105(52): p. 20641-20646.
119. Brown, S.E., W. Tong, and P.H. Krebsbach, The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs, 2009. 189(1-4): p. 256-260.
120. Yen, M.-L., et al., Efficient derivation and concise gene expression profiling of human embryonic stem cell-derived mesenchymal progenitors (EMPs). Cell Transplantation, 2011. 20(10): p. 1529-1545.
121. Kimbrel, E.A., et al., Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem cells and development, 2014. 23(14): p. 1611-1624.
122. Wang, X., et al., Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem cell reports, 2014. 3(1): p. 115-130.
123. Lian, Q., et al., Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem cells, 2007. 25(2): p. 425-436.
124. Zhang, Y., et al., Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension. Cell Transplantation, 2012. 21(10): p. 2225-2239.
125. Karlsson, C., et al., Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. Stem cell research, 2009. 3(1): p. 39-50.
126. Wang, X., et al., Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage. Stem cells, 2016. 34(2): p. 380-391.
127. Yan, L., et al., Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. International journal of biological sciences, 2018. 14(10): p. 1196.
128. Yan, L., et al., Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell death discovery, 2018. 4(1): p. 1-14.
129. Mahmood, A., et al., Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF‐β/activin/nodal signaling using SB‐431542. Journal of Bone and Mineral Research, 2010. 25(6): p. 1216-1233.
130. Sánchez, L., et al., Enrichment of human ESC‐derived multipotent mesenchymal stem cells with immunosuppressive and anti‐inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem cells, 2011. 29(2): p. 251-262.
131. Gonzalo-Gil, E., et al., Human embryonic stem cell-derived mesenchymal stromal cells ameliorate collagen-induced arthritis by inducing host-derived indoleamine 2, 3 dioxygenase. Arthritis research & therapy, 2016. 18(1): p. 1-9.
132. Deng, P., et al., Inhibition of IKK/NF-κB signaling enhances differentiation of mesenchymal stromal cells from human embryonic stem cells. Stem Cell Reports, 2016. 6(4): p. 456-465.
133. Chen, Y.S., et al., Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. Stem cells translational medicine, 2012. 1(2): p. 83-95.
134. Hawkins, K.E., et al., Embryonic stem cell-derived mesenchymal stem cells (MSCs) have a superior neuroprotective capacity over fetal MSCs in the hypoxic-ischemic mouse brain. Stem cells translational medicine, 2018. 7(5): p. 439-449.
135. Lian, Q., et al., Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation, 2010. 121(9): p. 1113-1123.
136. Zhang, J., et al., Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-a-go-go 1 (hEAG1) potassium channel. American Journal of Physiology-Cell Physiology, 2012. 303(2): p. C115-C125.
137. Fu, Q., et al., Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T‐cell phenotypes in allergic rhinitis. Allergy, 2012. 67(10): p. 1215-1222.
138. Li, X., et al., Mitochondrial transfer of induced pluripotent stem cell–derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke–induced damage. American journal of respiratory cell and molecular biology, 2014. 51(3): p. 455-465.
139. Zhang, Y., et al., Potent paracrine effects of human induced pluripotent stem cell-derived mesenchymal stem cells attenuate doxorubicin-induced cardiomyopathy. Scientific reports, 2015. 5(1): p. 1-17.
140. Gao, W.-X., et al., Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem cell research & therapy, 2017. 8(1): p. 1-16.
141. Cheng, P.-P., et al., iPSC-MSCs combined with low-dose rapamycin induced islet allograft tolerance through suppressing Th1 and enhancing regulatory T-cell differentiation. Stem cells and Development, 2015. 24(15): p. 1793-1804.
142. Zou, L., et al., A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Scientific reports, 2013. 3(1): p. 1-10.
143. Yang, H., et al., Therapeutic effect of TSG-6 engineered iPSC-derived MSCs on experimental periodontitis in rats: a pilot study. PloS one, 2014. 9(6): p. e100285.
144. Luzzani, C., et al., A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. Stem Cell Research & Therapy, 2015. 6(1): p. 1-13.
145. Liu, Y., et al., One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PloS one, 2012. 7(3): p. e33225.
146. Villa‐Diaz, L., et al., Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem cells, 2012. 30(6): p. 1174-1181.
147. Tang, M., et al., Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Engineering Part A, 2014. 20(7-8): p. 1295-1305.
148. Hynes, K., et al., Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem cells and development, 2014. 23(10): p. 1084-1096.
149. Hynes, K., et al., Potential of iPSC-derived mesenchymal stromal cells for treating periodontal disease. Stem Cells International, 2018. 2018.
150. Sheyn, D., et al., Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem cells translational medicine, 2016. 5(11): p. 1447-1460.
151. Ouchi, T., et al., LNGFR+ THY-1+ human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells. Differentiation, 2016. 92(5): p. 270-280.
152. Kimura, H., et al., Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration. Scientific reports, 2018. 8(1): p. 1-15.
153. Giuliani, M., et al., Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood, The Journal of the American Society of Hematology, 2011. 118(12): p. 3254-3262.
154. Frobel, J., et al., Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem cell reports, 2014. 3(3): p. 414-422.
155. Zhao, Q., et al., MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proceedings of the National Academy of Sciences, 2015. 112(2): p. 530-535.
156. Sun, Y.Q., et al., Insensitivity of human iPS cells‐derived mesenchymal stem cells to interferon‐γ‐induced HLA expression potentiates repair efficiency of hind limb ischemia in immune humanized NOD Scid gamma mice. Stem cells, 2015. 33(12): p. 3452-3467.
157. Himeno, T., et al., Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. BioMed research international, 2013. 2013.
158. Sung, T.-C., et al., Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials, 2020. 230: p. 119638.
159. Li, E., et al., Generation of mesenchymal stem cells from human embryonic stem cells in a complete serum-free condition. International journal of biological sciences, 2018. 14(13): p. 1901.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2022-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明