參考文獻 |
[1.] Duckworth, M. and W. Yaphe, The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 1971. 16(1): p. 189-197.
[2.] Lahaye, M. and C. Rochas. Chemical structure and physico-chemical properties of agar. in International workshop on gelidium. 1991. Springer.
[3.] Ed-Daoui, A. and P. Snabre, Poroviscoelasticity and compression-softening of agarose hydrogels. Rheologica Acta, 2021. 60(6): p. 327-351.
[4.] Rinaudo, M., Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 2008. 57(3): p. 397-430.
[5.] Ellis, A. and J.C. Jacquier, Manufacture and characterisation of agarose microparticles. Journal of Food Engineering, 2009. 90(2): p. 141-145.
[6.] Nada, A., Polymer Gels: Synthesis and Characterization. 2018.
[7.] Arnott, S., et al., The agarose double helix and its function in agarose gel structure. Journal of Molecular Biology, 1974. 90(2): p. 269-284.
[8.] Feiner, G., 5 - Additives: phosphates, salts (sodium chloride and potassium chloride, citrate, lactate) and hydrocolloids, in Meat Products Handbook, G. Feiner, Editor. 2006, Woodhead Publishing. p. 72-88.
[9.] Lee, T.Y., K.-h. Yoon, and J.I. Lee, NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D. Biology open, 2016. 5(4): p. 529-534.
[10.] Normand, V., et al., New insight into agarose gel mechanical properties. Biomacromolecules, 2000. 1(4): p. 730-738.
[11.] Burey, P., et al., Hydrocolloid gel particles: formation, characterization, and application. Crit Rev Food Sci Nutr, 2008. 48(5): p. 361-77.
[12.] Mikuš, Ľ., Ľ. Valík, and L. Dodok, Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2011. 59: p. 325-334.
[13.] Antonietti, M., Microgels, in Encyclopedia of Materials - Science and Technology. 2001. p. 5635-5637.
[14.] Singhal, R. and K. Gupta, A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polymer-Plastics Technology and Engineering, 2016. 55(1): p. 54-70.
[15.] Plamper, F.A. and W. Richtering, Functional microgels and microgel systems. Accounts of chemical research, 2017. 50(2): p. 131-140.
[16.] Thorne, J.B., G.J. Vine, and M.J. Snowden, Microgel applications and commercial considerations. Colloid and Polymer Science, 2011. 289(5): p. 625.
[17.] Burey, P., et al., Gel particles from spray-dried disordered polysaccharides. Carbohydrate Polymers, 2009. 76(2): p. 206-213.
[18.] Shewan, H.M. and J.R. Stokes, Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering, 2013. 119(4): p. 781-792.
[19.] McClements, D.J., Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science, 2017. 240: p. 31-59.
[20.] Santoro, M., et al., Smart approach to evaluate drug diffusivity in injectable agar− carbomer hydrogels for drug delivery. The Journal of Physical Chemistry B, 2011. 115(11): p. 2503-2510.
[21.] Yin, Z.-C., Y.-L. Wang, and K. Wang, A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. Journal of Drug Delivery Science and Technology, 2018. 43: p. 12-18.
[22.] Iwanaga, S., et al., Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013. 109: p. 301-306.
[23.] Ishii, T., et al., Microgelation imparts emulsifying ability to surface-inactive polysaccharides—bottom-up vs top-down approaches. npj Science of Food, 2018. 2(1): p. 15.
[24.] Skelhon, T.S., et al., High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food Funct, 2013. 4(9): p. 1314-21.
[25.] Ellis, A., et al., Stabilisation of foams by agar gel particles. Food Hydrocolloids, 2017. 73: p. 222-228.
[26.] Malone, M.E. and I.A. Appelqvist, Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. Journal of controlled release, 2003. 90(2): p. 227-241.
[27.] Shao, L., et al., Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Design and Manufacturing, 2020. 3(1): p. 30-39.
[28.] Takeuchi, H., et al., Spray-dried composite particles of lactose and sodium alginate for direct tabletting and controlled releasing. International Journal of Pharmaceutics, 1998. 174(1): p. 91-100.
[29.] Suzawa, E. and I. Kaneda, Rheological properties of agar microgel suspensions prepared using water-in-oil emulsions. Journal of Biorheology, 2010. 24(2): p. 70-76.
[30.] Adams, S., W. Frith, and J. Stokes, Influence of particle modulus on the rheological properties of agar microgel suspensions. Journal of Rheology, 2004. 48(6): p. 1195-1213.
[31.] Gabriele, A., F. Spyropoulos, and I.T. Norton, A conceptual model for fluid gel lubrication. Soft Matter, 2010. 6(17): p. 4205-4213.
[32.] Garrec, D.A. and I.T. Norton, Understanding fluid gel formation and properties. Journal of Food Engineering, 2012. 112(3): p. 175-182.
[33.] Norton, I.T., D.A. Jarvis, and T.J. Foster, A molecular model for the formation and properties of fluid gels. International Journal of Biological Macromolecules, 1999. 26(4): p. 255-261.
[34.] Hamilton, I.E. and I.T. Norton, Modification to the lubrication properties of xanthan gum fluid gels as a result of sunflower oil and triglyceride stabilised water in oil emulsion addition. Food Hydrocolloids, 2016. 55: p. 220-227.
[35.] Chen, Y.M., S. Rangachari, and R. Jackson, Theoretical and experimental investigation of fluid and particle flow in a vertical standpipe. Industrial & Engineering Chemistry Fundamentals, 1984. 23(3): p. 354-370.
[36.] Gabriele, A., F. Spyropoulos, and I.T. Norton, Kinetic study of fluid gel formation and viscoelastic response with kappa-carrageenan. Food Hydrocolloids, 2009. 23(8): p. 2054-2061.
[37.] Zhang, K., The fluid gels: A research review. 2020, EDP Sciences: Les Ulis.
[38.] Zucca, P., R. Fernandez-Lafuente, and E. Sanjust, Agarose and its derivatives as supports for enzyme immobilization. Molecules, 2016. 21(11): p. 1577.
[39.] Ghebremedhin, M., S. Seiffert, and T.A. Vilgis, Physics of agarose fluid gels: Rheological properties and microstructure. Current Research in Food Science, 2021. 4: p. 436-448.
[40.] Tadros, T.F., Basic principles of dispersions. 2017: Walter de Gruyter GmbH & Co KG.
[41.] Garrec, D.A., B. Guthrie, and I.T. Norton, Kappa carrageenan fluid gel material properties. Part 1: Rheology. Food Hydrocolloids, 2013. 33(1): p. 151-159.
[42.] Hu, S.-W., et al., UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing. ACS Applied Materials & Interfaces, 2020. 12(21): p. 24450-24457.
[43.] Nguyen, T.P., et al., Coexistence of liquid-like emulsion and solid-like emulsion glass beyond the close-packing limit. Journal of the Taiwan Institute of Chemical Engineers, 2020. 115: p. 28-34.
[44.] Trudicova, M., et al., Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers (Basel), 2020. 12(11).
[45.] Grosskopf, A.K., et al., Viscoplastic matrix materials for embedded 3D printing. ACS applied materials & interfaces, 2018. 10(27): p. 23353-23361.
[46.] Zhao, J. and N. He, A mini-review of embedded 3D printing: supporting media and strategies. Journal of Materials Chemistry B, 2020. 8(46): p. 10474-10486.
[47.] Choi, J.-W. and H.-C. Kim, 3D printing technologies-a review. Journal of the Korean Society of Manufacturing Process Engineers, 2015. 14(3): p. 1-8.
[48.] LeBlanc, K.J., et al., Stability of high speed 3D printing in liquid-like solids. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1796-1799.
[49.] Khan, A.U., B.J. Briscoe, and P.F. Luckham, Interaction of binders with dispersant stabilised alumina suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 161(2): p. 243-257.
[50.] Zhang, J., et al., Improvement of the Dispersion of Al2O3 Slurries Using EDTA‐4Na. Journal of the American Ceramic Society, 2006. 89(4): p. 1440-1442. |