博碩士論文 109324060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.141.47.82
姓名 曾品堯(Pin-Yao Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討由Gluconacetobacter xylinum生產之細菌纖維素及其奈米化應用於吸附有機汙染物
(Investigating the bacterial cellulose production from gluconacetobacter xylinum and its nanonization for heavy metal adsorption)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 細菌纖維素(BC),是木質醋酸桿菌(Gluconacetobacter xylinum)的二次代謝產物。與植物纖維素相比有更好的結晶度,較容易生產的條件,同時也具有環境友善材料的特性,另外由於細菌纖維素其良好的生物相容性,保水率及具備網狀多孔的結構特性,目前在生物醫學、薄膜材料或食品方面有很多的應用,隨著近年來環保意識的抬頭,本研究決定將其奈米化後,用於水中有機汙染物的吸附。期望開發出一種環保的水處理方式。首先將菌種活化後接種至Buffered Schramm & Hestrins (BSH) broth中進行發酵,發酵條件比對了不同ph值、溫度及搖瓶轉速的發酵動力學參數,經過14天發酵後,都能在發酵液的氣液界面得到一層細菌纖維素薄膜。而最適合的環境為起始pH值3.5~4.4、溫度30˚C、搖床轉速75rpm或靜置,可以得到最大產物(Pmax)5.17 g/L、最大菌重(Xmax)8.17 g/L及葡萄糖對產物的轉換率(YP/S)0.69。而發酵完成後,為了將其奈米化,比較了兩種方式,化學及物理的水解,兩種方法都是消除纖維素中的無定型區域,提高結晶度,最後為了進一步提升吸附的效果,也選擇了兩種方案,一種是讓其表面以聚苯胺修飾,另一種是添加預處理過程,而分析的方式除了吸附實驗之外,也進行了XRD分析及保水能力測試,分別做為其結晶度和網狀孔洞的探討依據。而最後的結果顯示兩種水解方式都成功的消除纖維素中的無定型區域,且沒有破壞其結構,另外吸附的效果是經過聚苯胺改質的PANi-BCN有最好的表現,經過3分鐘後可讓甲基橙的濃度降到原本的20%,而雖然經過預處理的pre-BCN吸附效果不如PANi-BCN,但也能讓甲基橙的濃度降到原本的約30%,並且保留了其生物可降解的優點,做為一個有淺力的環境友善材料。
摘要(英) With the rising awareness of environmental protection in recent years, this study decided to use bacterial cellulose for the adsorption of organic pollutants in water after nanoization. First, the strains were activated and inoculated into Buffered Schramm & Hestrins (BSH) broth for fermentation. The fermentation conditions were compared with the fermentation kinetic parameters of different pH value, temperature and shake flask rotation speed. And The results show that the most suitable environment is the initial pH value of 3.5~4.4, temperature of 30˚C, shaker speed of 75 rpm or static, and the maximum product (Pmax) is 5.17 g/L, the maximum bacterial weight (Xmax) is 8.17 g/L and The conversion ratio of glucose to product (YP/S) was 0.69. After the fermentation, elimination of amorphous regions by hydrolysis. And finally, in order to further improve the effect of adsorption, two case were also chosen, one is to modify the surface with polyaniline, and the other is to add a pretreatment process . The final results showed that both hydrolysis methods successfully eliminated the amorphous region in cellulose without destroying its structure. In addition, the adsorption effect was that PANi-BCN modified by polyaniline had the best performance, after 3 minutes, the concentration of methyl orange can be reduced to 20% of the original, and although the adsorption effect of pre-BCN is not as good as PANi-BCN, it can also reduce the concentration of methyl orange to about 30% of the original, and retain its biodegradable advantage As a environmentally friendly material.
關鍵字(中) ★ 木質醋酸菌
★ 細菌纖維素
★ 水解
關鍵字(英) ★ Acetobacter xylinum
★ bacterial cellulose
★ hydrolysis
論文目次 第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧 3
2-1纖維素 3
2-1-1植物纖維素 3
2-1-2細菌纖維素 4
2-2菌種介紹 5
2-2-1 木質醋酸菌 5
2-2-2細菌纖維素合成機制 6
2-3影響發酵工程之物化因子 7
2-3-1營養源組成 7
2-3-2溫度 9
2-3-3 pH值 10
2-3-4 靜置或震盪 11
2-4 細菌纖維素結晶奈米化過程 11
2-5材料分析儀器介紹 14
2-5-1 真空冷凍乾燥機 14
2-5-2冷場發掃描式電子顯微鏡(CFE-SEM) 15
2-5-3 X光繞射分析儀(XRD) 16
2-5-4 紫外光/可見光分光光譜儀(UV-Vis) 17
2-5-5 氣相層析儀(GC) 18
2-6細菌纖維素之改質與應用 19
第三章 材料與方法 23
3-1 實驗規劃 23
3-2 實驗材料 24
3-2-1 實驗菌株 24
3-2-2 實驗藥品 24
3-2-3 實驗儀器及設備 27
3-3 實驗方法 29
3-3-1 菌種分離及保存 29
3-3-2 液態種瓶培養 31
3-3-3 液態發酵實驗 31
3-3-4 細菌纖維素保存 32
3-3-5 奈米化 33
3-3-6預處理方式 34
3-3-7 表面接枝聚苯胺 34
3-4 分析方法 34
3-4-1 菌重分析 34
3-4-2 產物及殘糖分析 35
3-4-3 pH值分析 38
3-4-4 DPPH自由基清除能力(DPPH free radical scavenging activity) 38
3-4-5 乙醇和醋酸濃度分析 39
3-4-6 材料特性分析 42
3-4-7 銅離子及甲基橙吸附 43
3-4-8 水含量測試 44
第四章 結果與討論 45
4-1 木質醋酸菌之生長曲線 45
4-2 在液態培養基下醋酸、pH值變化 46
4-3 木質醋酸菌在不同培養條件生長情況 46
4-3-1 pH值 47
4-3-2 溫度 49
4-3-3 搖床轉速 52
4-4 在最佳發酵環境下之抗氧化活性 54
4-5 SEM分析 55
4-6兩種水解方式對細菌纖維素之影響 55
4-6-1 XRD分析 56
4-6-2不同水解方式之水含量測試 57
4-6-3 不同水解方式之吸附實驗 58
4-7 經過聚苯胺改質後對細菌纖維素之影響 59
4-7-1 XRD分析 59
4-7-2 經聚苯胺改質之水含量測試 60
4-7-3 經聚苯胺改質之吸附實驗 61
4-8 預處理對細菌纖維素之影響 63
4-8-1 XRD分析 64
4-8-2 有無預處理之水含量測試 64
4-8-3 有無預處理之吸附實驗 65
第五章 結論 67
參考文獻 69
參考文獻 [1] M. Shoda, “Recent advances in bacterial cellulose production,” Biotechnology and Bioprocess Engineering, pp. 1-8, 2005.
[2] S. M. Mohammad, “An Overview of Biocellulose Production Using Acetobacter xylinum Culture,” Biological Research, pp. 307-313, 1 2014.
[3] F. Esa, “Overview of Bacterial Cellulose Production and Application,” ScienceDirect, pp. 113-119, 2014.
[4] Y. Xu, “Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials,” Carbohydrate Polymers, 2021.
[5] D. R.Ruka, “Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose,” Carbohydrate Polymers, pp. 613-622, 2012.
[6] R. E. CANNON, Acetobacter xylinum-Biotechnology and Food Technology, 2016.
[7] R. E. Cannon, “Biogenesis of Bacterial Cellulose,” Critical Reviews in Microbiology, pp. 435-447, 2008.
[8] B. Łaskiewicz, “Solubility of bacterial cellulose and its structural properties,” Applied Polymer, pp. 1871-1876, 1998.
[9] D. Mikkelsen, “Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524,” Applied Microbiology, pp. 576-583, 2009.
[10] S. M. Keshk, “Evaluation of different carbon sources for bacterial cellulose production,” Biotechnology, pp. 478-482, 2005.
[11] M. Ul-Islam, “Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields,” Biotechnology, pp. 1847-1861, 2015.
[12] S. M. Yim, “Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar,” Process Biochemistry, 2016.
[13] N. HALIB, “Physicochemical Properties and Characterization of Nata de Coco from Local Food Industries as a Source of Cellulose,” Sains Malaysiana, pp. 205-211, 2012.
[14] K. A. Zahan, “Effect of Incubation Temperature on Growth of Acetobacter xylinum 0416 and Bacterial Cellulose Production,” Applied Mechanics and Materials, pp. 3-8, 2015.
[15] K. A. Zahan, “Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor,” BIOLOGICAL SCIENCES, 2015.
[16] ElianeTrovatti, “Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory,” Carbohydrate Polymers, pp. 1417-1420, 2011.
[17] “Nanocellulose: From Fundamentalsn to Advanced Applications,” frontiers in Chemistry, pp. 392-423, 2020.
[18] M. Martínez-Sanz, “Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers,” Carbohydrate Polymers, pp. 228-236, 2011.
[19] J. Araki, “Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces,” Physicochemical and Engineering Aspects, pp. 75-82, 1998.
[20] M. Iguchi, “Bacterial cellulose—A masterpiece of nature’s arts.,” Materials Science, pp. 261-270, 2000.
[21] C.Legnani, “Bacterial cellulose membrane as flexible substrate for organic light emitting devices,” Thin Solid Films, pp. 1016-1020, 2008.
[22] N. Shah, “Overview of bacterial cellulose composites: A multipurpose advanced material,” Carbohydrate Polymers, pp. 1585-1598, 2013.
[23] L. Hong, “Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route,” Materials Letters, pp. 1710-1713, 2006.
[24] C. Castro, “Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus,” Carbohydrate Polymers, pp. 1033-1037, 2012.
[25] L. V. Cabañas-Romero, “Bacterial Cellulose−Chitosan Paper with Antimicrobial and Antioxidant Activities,” Biomacromolecules, pp. 1568-1577, 2020.
[26] Z. Shi, “In situ nano-assembly of bacterial cellulose–polyaniline composites,” Royal Society of Chemistry, pp. 1040-1046, 2012.
[27] Byoung-HoLee, “Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films,” Current Applied Physics, pp. 75-80, 2012.
[28] M. Pandey, “Dissolution study of bacterial cellulose (nata de coco) from local food industry: Solubility behavior & structural changes,” Int J Pharm Pharm Sci, pp. 89-93, 2014.
[29] E. Y. Wardhono, “Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-friendly Process of Isolating Bacterial Cellulose Nanocrystals,” nanomaterials, pp. 859-872, 2018.
[30] R. Li, “Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane,” Journal of Hazardous Materials, pp. 20-30, 2014.
[31] K. Jahan, “Removal of hexavalent chromium from potable drinking water by polyaniline coated bacterial cellulose mat,” Environ. Sci, pp. 1039-1075, 2018.
[32] “Biocyclopedia-Estimation of Reducing Sugars by the Dinitro Salicylic Acid (DNS) Method.”.
[33] T.-H. Liu, “探討利用 Lactobacillus plantarum 發酵 Momordica charantia 山苦瓜對其降血糖及其他生物活性之影響,” 2020.
[34] M. Massaro, “A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin,” Journal of Materials Chemistry B, pp. 2229-2241, 2016.
[35] C. Zhijiang, “Bacterial Cellulose/Collagen Composite: Characterization and First Evaluation of Cytocompatibility,” Journal of Applied Polymer Science, pp. 2939-2943, 2010.
[36] 曾乙仁, 利用醋酸菌發酵(Acetobater xylimum)鳳梨汁生產細菌纖維素之研究, 1995.
[37] Yung-ChungLo, “Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis,” Bioresource Technology, pp. 5802-5807, 2009.
[38] H. S.Barud, “Self-supported silver nanoparticles containing bacterial cellulose membranes,” Materials Science and Engineering: C, pp. 515-518, 2008.
[39] J. C.Meza-Contreras, “XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses,” Carbohydrate Research, pp. 51-59, 2018.
[40] W. Tang, “The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane,” World Journal of Microbiology and Biotechnology, pp. 125-131, 2010.
[41] L.Hong, “Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route,” Materials Letters, pp. 1710-1713, 2006.
[42] HadiHosseini, “Density functional theory simulation for Cr(VI) removal from wastewater using bacterial cellulose/polyaniline,” International Journal of Biological Macromolecules, pp. 883-901, 2020.
[43] K. Jahan, “Bacterial Cellulose-Polyaniline Porous Mat for Removal of Methyl Orange and Bacterial Pathogens from Potable Water,” Journal of Polymers and the Environment, pp. 1257-1270, 2021.
[44] H. Barud, “Thermal characterization of bacterial cellulose–phosphate composite membranes,” Journal of Thermal Analysis and Calorimetry, p. 815–818, 2007.
[45] K. Jahan, “Removal of hexavalent chromium from potable drinking water by polyaniline coated bacterial cellulose mat,” Environmental Science Water Research & Technology, 2018.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明