博碩士論文 109324069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.119.119.119
姓名 翁宏諭(Hong-Yu Wong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在可撓曲矽單晶基材上製備銀/多孔隙矽晶奈米線/矽晶孔洞異質結構陣列及其氣體感測特性研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以兩步驟金屬輔助無電鍍化學蝕刻法,成功地於Ptype(001)、N type(001)晶面之矽單晶基材上製備高深寬比、大面積準直矽晶奈米線陣列,再由丙酮、氧氣驗證趨勢變化與機制。除此之外,更進一步以橫向蝕刻製備多孔隙矽晶奈米線陣列,此多孔隙奈米結構展現更優異之比表面積,由氣體感測結果證明其大幅提升對丙酮感測之性能,再將最佳條件矽晶多孔隙奈米線陣列以無電鍍銀均勻披覆多孔隙奈米線上。銀/多孔隙矽晶奈米線陣列蕭特基氣體感測器在額定電壓下量測氣體響應、靈敏度、響應時間及恢復時間。最後,將具有最佳製程條件直接與超薄可撓曲矽單晶基材整合。
本研究以一步驟金屬輔助均勻化學蝕刻法成功製備超薄可撓曲矽單晶基材,再透過其上製程條件製備可撓曲銀/多孔隙矽晶奈米線陣列,展現十分優異之彎曲能力,可分別於 2.5cm、 1.6cm 曲率半徑下進行氣體感測,測試彎曲前後是否因比表面積增加,而更加提升對丙酮之響應。
最後,針對多孔隙所造成恢復時間增加提出改善方式,正面以奈米線為基礎上,背面以孔洞為基礎,製備出可撓曲銀/多孔隙矽晶奈米線/矽晶孔洞異質結構陣列,使得氣體有另一個途徑進行脫附,藉此縮短恢復時間,達到元件性能之優化。
摘要(英) In this study, the high aspect ratio, large-area, vertically-aligned single crystalline silicon
nanowire arrays (SiNWs) on P type (001) and N type (001) silicon substrate is successfully fabricated by the two-step metal-catalyzed electroless etching approach. It is proved the variation trend and mechanism by the acetone and oxygen. In addition, the single crystalline porous silicon nanowire arrays is further fabricated by the lateral etching, the porous nanostructure exhibited excellent specific surface area, from the result of gas sensing, it substantially enhance performance for acetone, and then we use the best one is uniformly decorated Ag on the porous SiNWs by the electroless Ag deposition. The produced porous Ag/SiNWs Schottky junction gas sensor is able to operate at any voltage and exhibit response, sensitivity, response time and recovery time.
The flexible porous Ag/SiNWs Schottky junction gas sensor is demonstrated by combining with ultra-thin Si substrate which has excellent bending ability, and it can be applied to achieve gas sensing on 2.5 cm and 1.6 cm curvature surface. The resulting response enhancement can be attributed to specific surface area enhancement after bending.
In the last, we proposed improvement for the increase of recovery time caused by porosity. The front side is based on nanowires and the back side is based on holes. There is another way to desorb. Therefore, we look forward to shortening the recovery time and optimizing the performance of the device.
關鍵字(中) ★ 矽晶奈米線
★ 橫向蝕刻
★ 無電鍍披覆銀
★ 可撓曲矽單晶基材
★ 氣體感測器
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽晶奈米線之製備方法 3
1-3 氣體感測原理與機制 5
1-3-1一維奈米結構氣體感測器 5
1-3-2 金屬氧化物半導體感測氣體之機制 7
1-3-3 矽晶半導體感測氣體之機制 9
1-4 金屬奈米粒子製備方法及其增強氣體感測機制 10
1-5 超薄可撓曲矽晶感測元件 12
1-5-1 超薄可撓曲感測元件之多元應用 12
1-5-2 超薄可撓曲矽晶元件之製程 13
1-6 研究動機及目標 15
第二章 實驗步驟及儀器設備 17
2-1 實驗步驟 17
2-1-1 矽單晶基材使用前處理 17
2-1-2 製備超薄可撓曲矽單晶基材 18
2-1-3 兩步驟金屬輔助化學蝕刻法製備矽晶孔洞陣列 18
2-1-4 兩步驟金屬輔助化學蝕刻法製備矽晶奈米線陣列 18
2-1-5 橫向蝕刻法製備可撓曲多孔隙矽晶奈米線/矽晶孔洞異質結構陣列 19
2-1-6 以各式氧化製程測試元件響應度 19
2-1-7 無電鍍銀奈米粒子均勻披覆多孔隙矽晶奈米線之製備 20
2-1-8 製備氣體感測元件 21
2-2 試片分析 21
2-2-1 掃描式電子顯微鏡 21
2-2-2 穿透式電子顯微鏡 22
2-2-3 氣體感測系統 22
第三章 結果與討論 23
3-1 製備矽晶奈米線陣列 23
3-1-1 矽晶奈米線陣列之製備 23
3-1-2 多孔隙矽晶奈米線陣列之製備 24
3-1-3 無電鍍銀奈米粒子均勻披覆多孔隙矽晶奈米線陣列 25
3-2 P型矽晶奈米線及N型矽晶奈米線陣列之氣體感測分析 25
3-2-1 矽晶奈米線陣列氣體感測元件之電極設計及測試性能指標 26
3-2-2 氣體分子與感測元件表面變化 27
3-2-3 製備不同氧化途徑之矽晶奈米線 27
3-2-4 P型矽晶奈米線陣列之氣體感測性質分析 28
3-2-5 P型多孔隙矽晶奈米線陣列之氣體感測性質分析 29
3-2-6 P型銀/多孔隙矽晶奈米線陣列之氣體感測性質分析 30
3-2-7 N型矽晶奈米線陣列之氣體感測性質分析 30
3-2-8 P型與N型矽晶奈米線陣列之感測機制及其銀奈米粒子增強氣體感測機制 31
3-3 P型可撓曲矽單晶基材上製備銀/多孔隙矽晶奈米線陣列 33
3-3-1可撓曲矽單晶基材之製備 34
3-3-2無電鍍銀奈米粒子均勻披覆可撓曲多孔隙矽晶奈米線陣列之製備 35
3-3-3無電鍍銀奈米粒子均勻披覆可撓曲多孔隙矽晶奈米線陣列之氣體感測性質分析 35
3-3-4 無電鍍銀奈米粒子均勻披覆可撓曲多孔隙矽晶奈米線/矽晶孔洞異質結構陣列之製備 36
3-3-5 無電鍍銀奈米粒子均勻披覆可撓曲多孔隙矽晶奈米線/矽晶孔洞 異質結構陣列之氣體感測性質分析 37
第四章 結論與未來展望 38
4-1 結論 38
4-2 未來展望 39
參考文獻 40
表目錄 46
圖目錄 48
參考文獻 [1] B. Wu, A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," J. Appl. Phys. 108 (2010) 9.
[2] S.A. Guerrera and A.I. Akinwande, "Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-alignedgates,"Nanotechnology 27 (2016) 295302.
[3] S. J. Cho, T. An, J. Y. Kim, J. Sung, and G. Lim, "Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance, " Commun. Chem. 47 (2011) 6108.
[4] K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, "Multicolored vertical silicon nanowires, " Nano Lett. 11 (2011) 1851.
[5] C. Y. Wu, Z. Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, and L. B. Luo, "Core– shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector, " J. Mater. Chem. C 4 (2016) 10804.
[6] M. Dutta, H. T. Bui, and N. Fukata, "Effect of nanowire length on the performance of silicon nanowires based solar cell," Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 (2014) 045014.
[7] G. Sandu, M. Coulombier, V. Kumar, H. G. Kassa, I. Avram, R. Ye, and S. Melinte, "Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries, " Sci. Rep. 8 (2018) 1.
[8] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, and X. Zheng, "On-demand production of hydrogen by reacting porous silicon nanowires with water," Nano Res. 13 (2020) 1459.
[9] Y. Qin, Y. Jiang, and L. Zhao, "Modulation of agglomeration of vertical porous silicon nanowires and the effect on gas‐sensing response, " Adv. Energy Mater. 20 (2018) 1700893.
[10] Y. Guerfi and G. Larrieu, "Vertical silicon nanowire field effect transistors with nanoscale gate-all-around, " Nanoscale Res. Lett. 11 (2016) 1.
[11] K. Hassan, A. I. Uddin, and G. S. Chung, "Hydrogen sensing properties of Pt/Pd bimetal decorated on highly hydrophobic Si nanowires, " Int. J. Hydrog. Energy. 41 (2016) 10991.
[12] Y. Qin, Z. Cui, T. Zhang, and D. Liu, "Polypyrrole shell (nanoparticles)-functionalized silicon nanowires array with enhanced NH3-sensing response, " Sens. Actuator A Phys. 258 (2018) 246.
[13] J. Liao, Z. Li, G. Wang, C. Chen, S. Lv, and M. Li, "ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO 2 gas sensors at room temperature, " Phys. Chem. Chem. Phys. 18 (2016) 4835.
[14] J. H. Seo, E. Swinnich, Y. Y. Zhang, and M. Kim, "Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications, " Mater. Res. Lett. 8 (2020) 123.
[15] S. Lin, Y. Lu, S. Feng, Z. Hao, and Y. Yan, "A high current density direct-current generator based on a moving van der Waals Schottky diode, " Adv. Mater. 31 (2019) 1804398.
[16] E. Koivusalo, T. Hakkarainen, and M. Guina, "Structural investigation of uniform ensembles of self-catalyzed GaAs nanowires fabricated by a lithography-free technique, " Nanoscale Res. Lett. 12 (2017) 1.
[17] L. Zaraska, G. D. Sulka, and M. Jaskuła, "Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays, " Appl. Surf. Sci. 258 (2012) 7781. [18] S. Misra, L. Yu, M. Foldyna, and P. Roca I Cabarrocas, "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Sol. Energy Mater. Sol. Cells 118 (2013) 90. [19] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Adv. Mater. 15 (2003) 635.
[20] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Appl. Phys. Lett. 77 (2000) 2572.
[21] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Adv. Mater. 14 (2002) 1164.
[22] S. Yae, Y. Morii, N. Fukumuro, and H. Matsuda, "Catalytic activity of noble metals for metal-assisted chemical etching of silicon," Nanoscale Res. Lett. 7 (2012) 352.
[23] Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, "Galvanic deposition of nanostructured noble-metal films on silicon, "Electrochem. Solid-State Lett. 8 (2005) C148.
[24] A. Pal, R. Ghosh, and P. Giri, "Early stages of growth of Si nanowires by metal assisted chemical etching," Appl. Phys. Lett. 107 (2015) 072104.
[25] N. Geyer, B. Fuhrmann, H. S. Leipner, and P. Werner, "Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires," ACS Appl. Mater. Interfaces 5 (2013) 4302.
[26] Y. Wei, Y. Chen, L. Ye, and P. Chang, "Preparation of dendritic-like Ag crystals using monocrystalline silicon as template," Mater. Res. Bull. 46 (2011) 929.
[27] T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, "Ingrowth mechanism of silicon nanowires and silver dendrites," J. Electron. Mater. 35 (2006) 10.
[28] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching, " Curr. Appl. Phys. 13 (2013) 717.
[29] K. Peng, A. Lu, R. Zhang, and S. T. Lee, "Motility of metal nanoparticles in silicon and induced anisotropic silicon etching," Adv. Funct. Mater. 18 (2008) 3026.
[30] T. C. Yang, T. Y. Huang, H. C. Lee, T. J. Lin, and T. J. Yen, "Applying silicon nanoholes with excellent antireflection for enhancing photovoltaic performance," J. Electrochem. Soc. 159 (2011) B104.
[31] A. Togonal, L. He, and P. Roca i Cabarrocas, "Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching," Langmuir 30
42 (2014) 10290.
[32] Y. Qu, H. Zhou, and X. Duan, "Porous silicon nanowires," Nanoscale 3 (2011) 4060.
[33] I. Leontis, M. A. Botzakaki, S. N. Georga, and A. G. Nassiopoulou, "Study of Si nanowires produced by metal-assisted chemical etching as a light-trapping material in n-type c-Si solar cells," ACS omega 3 (2018) 10898.
[34] Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, and Y. Tang, "A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective," Sustain. Energy Fuels 4 (2020) 1577.
[35] H. J. In, C. R. Field, and P. E. Pehrsson, "Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection," Nanotechnology 22 (2011) 355501.
[36] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, and S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases," Sens. Actuator A Phys. 160 (2011) 580.
[37] L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. H. van Helden, C. E. Langley, R. Peverall, and S. Wood, "Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection," Anal. Chem. 85 (2013) 846.
[38] Y. Kudo, S. Kino, and Y. Matsuura, "Vacuum ultraviolet absorption spectroscopy analysis of breath acetone using a hollow optical fiber gas cell," Sensors 21 (2021) 478.
[39] D. Del Orbe Henriquez, I. Cho, H. Yang, J. Choi, M. Kang, K. S. Chang, and I. Park, "Pt nanostructures fabricated by local hydrothermal synthesis for low-power catalyticcombustion hydrogen sensors," ACS Appl. Nano Mater. 4 (2020) 7.
[40] E. B. Kim and H. K. Seo, "Highly sensitive formaldehyde detection using well-aligned zinc oxide nanosheets synthesized by chemical bath deposition technique," Materials 12 (2019) 250.
[41] H. Zhang, B. Shen, W. Hu, and X. Liu, "Research on a fast-response thermal conductivity sensor based on carbon nanotube modification," Sensors 18 (2018) 2191.
[42] Z. Wang, L. Zhu, S. Sun, J. Wang, and W. Yan, "One-dimensional nanomaterials in resistive gas sensor: From material design to application," Chemosensors 9 (2021) 198. [43] G. Heiland, "Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen," Z Phys Chem 138 (1954) 459.
[44] A. Bielański, J. Dereń, and J. Haber, "Electric conductivity and catalytic activity of semiconducting oxide catalysts," Nature 179 (1957) 668.
[45] T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films," Anal. Chem. 34 (1962) 1502.
[46] N. Taguchi , "Gas detecting element and method of making it," Google Patents 1972.
[47] A. Gurlo, "Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen," ChemPhysChem 7 (2006) 2041.
[48] P. G. Harrison and M. J. Willett, "Tin oxide surfaces. Part 20.—Electrical properties of tin (IV) oxide gel: Nature of the surface species controlling the electrical conductance in air as a function of temperature, "Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85 (1989) 1921.
[49] H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sens. actuators. B Chem. 192 (2014) 607.
[50] F. Shao, F. Hernández-Ramírez, J. Prades, C. Fàbrega, T. Andreu, and J. Morante , "Copper (II) oxide nanowires for p-type conductometric NH3 sensing," Appl. Surf. Sci. 311 (2014) 177.
[51] I. Kortidis, H. C. Swart, S. S. Ray, and D. E. Motaung, "Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods," Sens. actuators. B Chem. 285 (2019) 92.
[52] H. Liu, J. Wan, Q. Fu, M. Li, W. Luo, Z. Zheng, and D. Zhou, "Tin oxide films for nitrogen dioxide gas detection at low temperatures," Sens. Actuators B Chem. 177 (2013) 460. [53] K. Lan, Z. Wang, X. Yang, J. Wei, Y. Qin, and G. Qin, "Flexible silicon nanowires sensor for acetone detection on plastic substrates," Nanotechnology 33 (2022) 155502.
[54] C. Samanta, A. Ghatak, A. Raychaudhuri, and B. Ghosh, "ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb," Nanotechnology 30 (2019) 305501.
[55] M. Li, M. Hu, Q. Liu, S. Ma, and P. Sun," Microstructure characterization and NO2sensing properties of porous silicon with intermediate pore size," Appl. Surf. Sci. 268 (2013) 188.
[56] L. Lin, D. Liu, Q. Chen, H. Zhou, and J. Wu, "A vertical tip–tip contact silicon nanowire array for gas sensing," Nanoscale 8 (2016) 17757.
[57] J. Baek, B. Jang, M. H. Kim, W. Kim, J. Kim, H. J. Rim, and W. Lee, "High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays," Sens. Actuators B Chem. 256 (2018) 465.
[58] D. Liu, L. Lin, Q. Chen, H. Zhou, and J. Wu, "Low power consumption gas sensor created from silicon nanowires/TiO2 core–shell heterojunctions," ACS sensors 2 (2017)1491.
[59] W. Wang, S. Ma, X. Liu, Y. Zhao, H. Li, Y. Li, and J. Zhuang, "NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon, " Sens. Actuators B Chem. 354 (2022) 131193.
[60] S. M. Wallace, W. Jevasuwan, and N. Fukata, "Adjustable metal particle grid formed through upward directed solid-state dewetting using silicon nanowires," Nanoscale Advances 2 (2020) 5607.
[61] V. Vendamani, S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. Pathak, "Threedimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection," J. Appl. Phys. 123 (2018) 014301.
[62] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, "Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion," Int. J. Heat Mass Transf. 82 (2015) 267.
[63] Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang," Supersensitive, fast‐response nanowire sensors by using Schottky contacts," Wiley Online Library 2010.
[64] L. B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, and T. Hadjersi, "H2 sensing properties of modified silicon nanowires," Prog. Nat. Sci. 25 (2015) 101.
[65] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection," ACS Appl. Mater. Interfaces 9 (2017) 28766.
[66] Y. Qin, D. Liu, Z. Wang, and Y. Jiang, "Ag nanoparticles-functionalized rough silicon nanowires array and its unique response characteristics to ultrararefied NO2," Sens. actuators. B Chem. 258 (2018) 730.
[67] S. Lim, D. S. Um, M. Ha, Q. Zhang, Y. Lee, Y. Lin, Z. Fan, and H. Ko, "Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes," Nano Res. 10 (2017) 22.
[68] L. Hao, H. Liu, H. Xu, S. Dong, Y. Du, Y. Wu, H. Zeng, J. Zhu, and Y. Liu, "Flexible PdWS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature," Sens. Actuators B Chem. 283 (2019) 740.
[69] L. R. Shobin and S. Manivannan, " Carbon nanotubes on paper: flexible and disposable chemiresistors," Sens. Actuators B Chem. 220 (2015) 1178. [70] Y. J. Kwon, A. Mirzaei, H. G. Na, S. Y. Kang, M. S. Choi, J. H. Bang, and H. W. Kim, " Porous Si nanowires for highly selective room-temperature NO2 gas sensing," Nanotechnology 29 (2018) 294001.
[71] D. H. Kim, W. Lee, and J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale 10 (2018) 17705.
[72] J. M. Weisse, C. H. Lee, D. R. Kim, and X. Zheng, "Fabrication of flexible and vertical silicon nanowire electronics," Nano Lett. 12 (2012) 3339.
[73] S. C. Shiu, S. C. Hung, J. J. Chao, and C. F. Lin, "Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics," Appl. Surf. Sci. 255 (2009) 8566.
[74] S. Shu Chia, S. Hong Jhang, H. Shih Che, and L. Ching Fuh, "Transfer of silicon nanowires onto alien substrates by controlling direction of metal-assisted etching," IEEE International Conference on Nanotechnology 10 (2010) 474. [75] J. Son and H. Lee, "Contact-area-changeable CMP conditioning for enhancing pad lifetime," Appl. Sci. 11 (2021) 3521.
[76] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-area freestanding ultrathin single-crystal silicon as processable materials," Nano Lett. 13 (2013) 4393.
[77] C. C. Lin, Y. J. Chuang, W. H. Sun, C. Cheng, Y. T. Chen, Z. L. Chen, and F. H. Ko, "Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs," Microelectron Eng. 145 (2015) 128.
[78] P. Pal, V. Swarnalatha, A. V. N. Rao, A. K. Pandey, H. Tanaka, and K. Sato, "High speed silicon wet anisotropic etching for applications in bulk micromachining: a review," Micro Nano Lett. 9 (2021) 1.
[79] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Appl. Surf. Sci. 273 (2013) 107.
[80] R. K. Joshi and A. Kumar, "Room temperature gas detection using silicon nanowires," Mater. Today. 14 (2011) 1.
[81] B. R. Huang, Y. K. Yang, and H. L. Cheng, "Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor, "Nanotechnology 24 (2013) 475502.
[82] S. J. Young, Y. H. Liu, Z. D. Lin, K. Ahmed, M. N. I. Shiblee, S. Romanuik, and A. Khosla, "Multi-walled carbon nanotubes decorated with silver nanoparticles for acetone gas sensing at room temperature," J. Electrochem. Soc. 167 (2020) 167519.
[83] J. Hu, J. Yang, W. Wang, Y. Xue, Y. Sun, P. Li, and Y. Chen, "Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection," Mater. Res. Bull. 102 (2018) 294.
[84] Y. Xiong, Z. Zhu, D. Ding, W. Lu, and Q. Xue, "Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor," Appl. Surf. Sci. 443 (2018) 114.
[85] S. Kim, S. Park, S. Park, and C. Lee, "Acetone sensing of Au and Pd-decorated WO3 nanorod sensors," Sens. actuators. B Chem. 209 (2015) 180.
[86] Y. Qin, Y. Wang, Y. Liu, and X. Zhang, "KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application," Nanotechnology 27 (2016) 465502.
[87] S. Young and Z. Lin, "Acetone gas sensors composed of carbon nanotubes with adsorbed Au nanoparticles on plastic substrate," Microsyst. Technol. 24 (2018) 3973.
[88] X. Song, R. Hu, S. Xu, Z. Liu, J. Wang, Y. Shi, and L. Yu, "Highly sensitive ammonia gas detection at room temperature by integratable silicon nanowire field-effect sensors," ACS Appl. Mater. Interfaces 13 (2021) 14377.
指導教授 鄭紹良 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明