參考文獻 |
[1] B. Wu, A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," J. Appl. Phys. 108 (2010) 9.
[2] S.A. Guerrera and A.I. Akinwande, "Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-alignedgates,"Nanotechnology 27 (2016) 295302.
[3] S. J. Cho, T. An, J. Y. Kim, J. Sung, and G. Lim, "Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance, " Commun. Chem. 47 (2011) 6108.
[4] K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, "Multicolored vertical silicon nanowires, " Nano Lett. 11 (2011) 1851.
[5] C. Y. Wu, Z. Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, and L. B. Luo, "Core– shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector, " J. Mater. Chem. C 4 (2016) 10804.
[6] M. Dutta, H. T. Bui, and N. Fukata, "Effect of nanowire length on the performance of silicon nanowires based solar cell," Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 (2014) 045014.
[7] G. Sandu, M. Coulombier, V. Kumar, H. G. Kassa, I. Avram, R. Ye, and S. Melinte, "Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries, " Sci. Rep. 8 (2018) 1.
[8] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, and X. Zheng, "On-demand production of hydrogen by reacting porous silicon nanowires with water," Nano Res. 13 (2020) 1459.
[9] Y. Qin, Y. Jiang, and L. Zhao, "Modulation of agglomeration of vertical porous silicon nanowires and the effect on gas‐sensing response, " Adv. Energy Mater. 20 (2018) 1700893.
[10] Y. Guerfi and G. Larrieu, "Vertical silicon nanowire field effect transistors with nanoscale gate-all-around, " Nanoscale Res. Lett. 11 (2016) 1.
[11] K. Hassan, A. I. Uddin, and G. S. Chung, "Hydrogen sensing properties of Pt/Pd bimetal decorated on highly hydrophobic Si nanowires, " Int. J. Hydrog. Energy. 41 (2016) 10991.
[12] Y. Qin, Z. Cui, T. Zhang, and D. Liu, "Polypyrrole shell (nanoparticles)-functionalized silicon nanowires array with enhanced NH3-sensing response, " Sens. Actuator A Phys. 258 (2018) 246.
[13] J. Liao, Z. Li, G. Wang, C. Chen, S. Lv, and M. Li, "ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO 2 gas sensors at room temperature, " Phys. Chem. Chem. Phys. 18 (2016) 4835.
[14] J. H. Seo, E. Swinnich, Y. Y. Zhang, and M. Kim, "Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications, " Mater. Res. Lett. 8 (2020) 123.
[15] S. Lin, Y. Lu, S. Feng, Z. Hao, and Y. Yan, "A high current density direct-current generator based on a moving van der Waals Schottky diode, " Adv. Mater. 31 (2019) 1804398.
[16] E. Koivusalo, T. Hakkarainen, and M. Guina, "Structural investigation of uniform ensembles of self-catalyzed GaAs nanowires fabricated by a lithography-free technique, " Nanoscale Res. Lett. 12 (2017) 1.
[17] L. Zaraska, G. D. Sulka, and M. Jaskuła, "Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays, " Appl. Surf. Sci. 258 (2012) 7781. [18] S. Misra, L. Yu, M. Foldyna, and P. Roca I Cabarrocas, "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Sol. Energy Mater. Sol. Cells 118 (2013) 90. [19] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Adv. Mater. 15 (2003) 635.
[20] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Appl. Phys. Lett. 77 (2000) 2572.
[21] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Adv. Mater. 14 (2002) 1164.
[22] S. Yae, Y. Morii, N. Fukumuro, and H. Matsuda, "Catalytic activity of noble metals for metal-assisted chemical etching of silicon," Nanoscale Res. Lett. 7 (2012) 352.
[23] Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, "Galvanic deposition of nanostructured noble-metal films on silicon, "Electrochem. Solid-State Lett. 8 (2005) C148.
[24] A. Pal, R. Ghosh, and P. Giri, "Early stages of growth of Si nanowires by metal assisted chemical etching," Appl. Phys. Lett. 107 (2015) 072104.
[25] N. Geyer, B. Fuhrmann, H. S. Leipner, and P. Werner, "Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires," ACS Appl. Mater. Interfaces 5 (2013) 4302.
[26] Y. Wei, Y. Chen, L. Ye, and P. Chang, "Preparation of dendritic-like Ag crystals using monocrystalline silicon as template," Mater. Res. Bull. 46 (2011) 929.
[27] T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, "Ingrowth mechanism of silicon nanowires and silver dendrites," J. Electron. Mater. 35 (2006) 10.
[28] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching, " Curr. Appl. Phys. 13 (2013) 717.
[29] K. Peng, A. Lu, R. Zhang, and S. T. Lee, "Motility of metal nanoparticles in silicon and induced anisotropic silicon etching," Adv. Funct. Mater. 18 (2008) 3026.
[30] T. C. Yang, T. Y. Huang, H. C. Lee, T. J. Lin, and T. J. Yen, "Applying silicon nanoholes with excellent antireflection for enhancing photovoltaic performance," J. Electrochem. Soc. 159 (2011) B104.
[31] A. Togonal, L. He, and P. Roca i Cabarrocas, "Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching," Langmuir 30
42 (2014) 10290.
[32] Y. Qu, H. Zhou, and X. Duan, "Porous silicon nanowires," Nanoscale 3 (2011) 4060.
[33] I. Leontis, M. A. Botzakaki, S. N. Georga, and A. G. Nassiopoulou, "Study of Si nanowires produced by metal-assisted chemical etching as a light-trapping material in n-type c-Si solar cells," ACS omega 3 (2018) 10898.
[34] Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, and Y. Tang, "A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective," Sustain. Energy Fuels 4 (2020) 1577.
[35] H. J. In, C. R. Field, and P. E. Pehrsson, "Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection," Nanotechnology 22 (2011) 355501.
[36] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, and S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases," Sens. Actuator A Phys. 160 (2011) 580.
[37] L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. H. van Helden, C. E. Langley, R. Peverall, and S. Wood, "Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection," Anal. Chem. 85 (2013) 846.
[38] Y. Kudo, S. Kino, and Y. Matsuura, "Vacuum ultraviolet absorption spectroscopy analysis of breath acetone using a hollow optical fiber gas cell," Sensors 21 (2021) 478.
[39] D. Del Orbe Henriquez, I. Cho, H. Yang, J. Choi, M. Kang, K. S. Chang, and I. Park, "Pt nanostructures fabricated by local hydrothermal synthesis for low-power catalyticcombustion hydrogen sensors," ACS Appl. Nano Mater. 4 (2020) 7.
[40] E. B. Kim and H. K. Seo, "Highly sensitive formaldehyde detection using well-aligned zinc oxide nanosheets synthesized by chemical bath deposition technique," Materials 12 (2019) 250.
[41] H. Zhang, B. Shen, W. Hu, and X. Liu, "Research on a fast-response thermal conductivity sensor based on carbon nanotube modification," Sensors 18 (2018) 2191.
[42] Z. Wang, L. Zhu, S. Sun, J. Wang, and W. Yan, "One-dimensional nanomaterials in resistive gas sensor: From material design to application," Chemosensors 9 (2021) 198. [43] G. Heiland, "Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen," Z Phys Chem 138 (1954) 459.
[44] A. Bielański, J. Dereń, and J. Haber, "Electric conductivity and catalytic activity of semiconducting oxide catalysts," Nature 179 (1957) 668.
[45] T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films," Anal. Chem. 34 (1962) 1502.
[46] N. Taguchi , "Gas detecting element and method of making it," Google Patents 1972.
[47] A. Gurlo, "Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen," ChemPhysChem 7 (2006) 2041.
[48] P. G. Harrison and M. J. Willett, "Tin oxide surfaces. Part 20.—Electrical properties of tin (IV) oxide gel: Nature of the surface species controlling the electrical conductance in air as a function of temperature, "Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85 (1989) 1921.
[49] H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sens. actuators. B Chem. 192 (2014) 607.
[50] F. Shao, F. Hernández-Ramírez, J. Prades, C. Fàbrega, T. Andreu, and J. Morante , "Copper (II) oxide nanowires for p-type conductometric NH3 sensing," Appl. Surf. Sci. 311 (2014) 177.
[51] I. Kortidis, H. C. Swart, S. S. Ray, and D. E. Motaung, "Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods," Sens. actuators. B Chem. 285 (2019) 92.
[52] H. Liu, J. Wan, Q. Fu, M. Li, W. Luo, Z. Zheng, and D. Zhou, "Tin oxide films for nitrogen dioxide gas detection at low temperatures," Sens. Actuators B Chem. 177 (2013) 460. [53] K. Lan, Z. Wang, X. Yang, J. Wei, Y. Qin, and G. Qin, "Flexible silicon nanowires sensor for acetone detection on plastic substrates," Nanotechnology 33 (2022) 155502.
[54] C. Samanta, A. Ghatak, A. Raychaudhuri, and B. Ghosh, "ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb," Nanotechnology 30 (2019) 305501.
[55] M. Li, M. Hu, Q. Liu, S. Ma, and P. Sun," Microstructure characterization and NO2sensing properties of porous silicon with intermediate pore size," Appl. Surf. Sci. 268 (2013) 188.
[56] L. Lin, D. Liu, Q. Chen, H. Zhou, and J. Wu, "A vertical tip–tip contact silicon nanowire array for gas sensing," Nanoscale 8 (2016) 17757.
[57] J. Baek, B. Jang, M. H. Kim, W. Kim, J. Kim, H. J. Rim, and W. Lee, "High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays," Sens. Actuators B Chem. 256 (2018) 465.
[58] D. Liu, L. Lin, Q. Chen, H. Zhou, and J. Wu, "Low power consumption gas sensor created from silicon nanowires/TiO2 core–shell heterojunctions," ACS sensors 2 (2017)1491.
[59] W. Wang, S. Ma, X. Liu, Y. Zhao, H. Li, Y. Li, and J. Zhuang, "NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon, " Sens. Actuators B Chem. 354 (2022) 131193.
[60] S. M. Wallace, W. Jevasuwan, and N. Fukata, "Adjustable metal particle grid formed through upward directed solid-state dewetting using silicon nanowires," Nanoscale Advances 2 (2020) 5607.
[61] V. Vendamani, S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. Pathak, "Threedimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection," J. Appl. Phys. 123 (2018) 014301.
[62] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, "Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion," Int. J. Heat Mass Transf. 82 (2015) 267.
[63] Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei, and Z. L. Wang," Supersensitive, fast‐response nanowire sensors by using Schottky contacts," Wiley Online Library 2010.
[64] L. B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, and T. Hadjersi, "H2 sensing properties of modified silicon nanowires," Prog. Nat. Sci. 25 (2015) 101.
[65] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection," ACS Appl. Mater. Interfaces 9 (2017) 28766.
[66] Y. Qin, D. Liu, Z. Wang, and Y. Jiang, "Ag nanoparticles-functionalized rough silicon nanowires array and its unique response characteristics to ultrararefied NO2," Sens. actuators. B Chem. 258 (2018) 730.
[67] S. Lim, D. S. Um, M. Ha, Q. Zhang, Y. Lee, Y. Lin, Z. Fan, and H. Ko, "Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes," Nano Res. 10 (2017) 22.
[68] L. Hao, H. Liu, H. Xu, S. Dong, Y. Du, Y. Wu, H. Zeng, J. Zhu, and Y. Liu, "Flexible PdWS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature," Sens. Actuators B Chem. 283 (2019) 740.
[69] L. R. Shobin and S. Manivannan, " Carbon nanotubes on paper: flexible and disposable chemiresistors," Sens. Actuators B Chem. 220 (2015) 1178. [70] Y. J. Kwon, A. Mirzaei, H. G. Na, S. Y. Kang, M. S. Choi, J. H. Bang, and H. W. Kim, " Porous Si nanowires for highly selective room-temperature NO2 gas sensing," Nanotechnology 29 (2018) 294001.
[71] D. H. Kim, W. Lee, and J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale 10 (2018) 17705.
[72] J. M. Weisse, C. H. Lee, D. R. Kim, and X. Zheng, "Fabrication of flexible and vertical silicon nanowire electronics," Nano Lett. 12 (2012) 3339.
[73] S. C. Shiu, S. C. Hung, J. J. Chao, and C. F. Lin, "Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics," Appl. Surf. Sci. 255 (2009) 8566.
[74] S. Shu Chia, S. Hong Jhang, H. Shih Che, and L. Ching Fuh, "Transfer of silicon nanowires onto alien substrates by controlling direction of metal-assisted etching," IEEE International Conference on Nanotechnology 10 (2010) 474. [75] J. Son and H. Lee, "Contact-area-changeable CMP conditioning for enhancing pad lifetime," Appl. Sci. 11 (2021) 3521.
[76] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-area freestanding ultrathin single-crystal silicon as processable materials," Nano Lett. 13 (2013) 4393.
[77] C. C. Lin, Y. J. Chuang, W. H. Sun, C. Cheng, Y. T. Chen, Z. L. Chen, and F. H. Ko, "Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs," Microelectron Eng. 145 (2015) 128.
[78] P. Pal, V. Swarnalatha, A. V. N. Rao, A. K. Pandey, H. Tanaka, and K. Sato, "High speed silicon wet anisotropic etching for applications in bulk micromachining: a review," Micro Nano Lett. 9 (2021) 1.
[79] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Appl. Surf. Sci. 273 (2013) 107.
[80] R. K. Joshi and A. Kumar, "Room temperature gas detection using silicon nanowires," Mater. Today. 14 (2011) 1.
[81] B. R. Huang, Y. K. Yang, and H. L. Cheng, "Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor, "Nanotechnology 24 (2013) 475502.
[82] S. J. Young, Y. H. Liu, Z. D. Lin, K. Ahmed, M. N. I. Shiblee, S. Romanuik, and A. Khosla, "Multi-walled carbon nanotubes decorated with silver nanoparticles for acetone gas sensing at room temperature," J. Electrochem. Soc. 167 (2020) 167519.
[83] J. Hu, J. Yang, W. Wang, Y. Xue, Y. Sun, P. Li, and Y. Chen, "Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection," Mater. Res. Bull. 102 (2018) 294.
[84] Y. Xiong, Z. Zhu, D. Ding, W. Lu, and Q. Xue, "Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor," Appl. Surf. Sci. 443 (2018) 114.
[85] S. Kim, S. Park, S. Park, and C. Lee, "Acetone sensing of Au and Pd-decorated WO3 nanorod sensors," Sens. actuators. B Chem. 209 (2015) 180.
[86] Y. Qin, Y. Wang, Y. Liu, and X. Zhang, "KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application," Nanotechnology 27 (2016) 465502.
[87] S. Young and Z. Lin, "Acetone gas sensors composed of carbon nanotubes with adsorbed Au nanoparticles on plastic substrate," Microsyst. Technol. 24 (2018) 3973.
[88] X. Song, R. Hu, S. Xu, Z. Liu, J. Wang, Y. Shi, and L. Yu, "Highly sensitive ammonia gas detection at room temperature by integratable silicon nanowire field-effect sensors," ACS Appl. Mater. Interfaces 13 (2021) 14377. |