參考文獻 |
Agarwal, M., Koelling, K. W., & Chalmers, J. J. (1998). Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment. Biotechnology Progress, 14(3), 517-526. https://doi.org/https://doi.org/10.1021/bp980015p
Ahmed, J., & Varshney, S. K. (2011). Polylactides—chemistry, properties and green packaging technology: a review. International journal of food properties, 14(1), 37-58.
Akbari, A., Jawaid, M., Hassan, A., & Balakrishnan, H. (2013). Epoxidized natural rubber toughened polylactic acid/talc composites: Mechanical, thermal, and morphological properties. Journal of Composite Materials, 48. https://doi.org/10.1177/0021998313477461
Al-Majed, A. (2022). Profiles of drug substances, excipients, and related methodology. Academic Press.
Alberti, C., Damps, N., Meißner, R. R. R., Hofmann, M., Rijono, D., & Enthaler, S. (2020). Selective Degradation of End-of-Life Poly(lactide) via Alkali-Metal-Halide Catalysis. Advanced Sustainable Systems, 4(1), 1900081. https://doi.org/https://doi.org/10.1002/adsu.201900081
Alger, M. (2017). Polymer Science Dictionary. Springer Netherlands. https://books.google.com.tw/books?id=hhehDAEACAAJ
Ali, W., Ali, H., Gillani, S., Zinck, P., & Souissi, S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 21(3), 1761-1786. https://doi.org/10.1007/s10311-023-01564-8
Aliotta, L., Sciara, L. M., Cinelli, P., Canesi, I., & Lazzeri, A. (2022). Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers (Basel), 14(5). https://doi.org/10.3390/polym14050977
Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., Mustafa Mohamed, A., & Alaskar, A. (2020). Use of recycled plastic as fine aggregate in cementitious composites: A review. Construction and Building Materials, 253, 119146. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119146
Anikin, I. N. (1984). Crystallization of Phlogopite KMg3 [AlSi3O10]F2 from Melts. In A. A. Chernov (Ed.), Рост Кристаллоь / Rost Kristallov / Growth of Crystals: Volume 12 (pp. 158-167). Springer US. https://doi.org/10.1007/978-1-4615-7116-2_25
Ariyoshi, S., Ohnishi, S., Mikami, H., Tsuji, H., Arakawa, Y., Tanaka, S., & Hiroshiba, N. (2021). Temperature dependent poly(L-lactide) crystallization investigated by Fourier transform terahertz spectroscopy. Materials Advances, 2. https://doi.org/10.1039/D1MA00195G
Arroyo, O., Huneault, M., Favis, B., & Bureau, M. (2010). Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polymer Composites, 31(1), 114-127.
Badía, J. D., Strömberg, E., Ribes-Greus, A., & Karlsson, S. (2011). Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide). European Polymer Journal, 47(7), 1416-1428. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2011.05.001
Bajpai, P. K., Singh, I., & Madaan, J. (2014). Development and characterization of PLA-based green composites:A review. Journal of Thermoplastic Composite Materials, 27(1), 52-81. https://doi.org/10.1177/0892705712439571
Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., & Bikiaris, D. N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11).
Belgacem, K., Llewellyn, P., Kais, N., & trabelsi ayadi, M. (2008). Thermal behaviour study of the talc. Optoelectronics and Advanced Materials, Rapid Communications, 2, 332-336.
Beltrán, F. R., Lorenzo, V., de la Orden, M. U., & Martínez-Urreaga, J. (2016). Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polymer Degradation and Stability, 133, 339-348. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2016.09.018
Beltrán, F. R., Ortega, E., Solvoll, A. M., Lorenzo, V., de la Orden, M. U., & Martínez Urreaga, J. (2018). Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites. Journal of Polymers and the Environment, 26(5), 2142-2152. https://doi.org/10.1007/s10924-017-1117-z
Bioplastics, E. (2023). European Bioplastics Announces Speaker Line-up for EBC 2023.
Bob B. He, J. W. a. S. (2010). Two-Dimensional X-Ray Diffraction Author: Bob B. He, John Wiley and Sons, New York, 2009: ISBN 9780470227220, 426 pages + prefix. Joseph H. Reibenspies and Nattamai Bhuvanesh. Powder Diffraction, 25(2), 200-200. https://doi.org/10.1154/1.3427643
Bužarovska, A. (2021). Poly(l-lactic acid)/alkali lignin composites: properties, biocompatibility, cytotoxicity and antimicrobial behavior. Journal of Materials Science, 56. https://doi.org/10.1007/s10853-021-06185-6
Cai, Y., Lv, J., & Feng, J. (2013). Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. Journal of Polymers and the Environment, 21(1), 108-114. https://doi.org/10.1007/s10924-012-0534-2
Carné Sánchez, A., & Collinson, S. R. (2011). The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. European Polymer Journal, 47(10), 1970-1976. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2011.07.013
Carraher, C. E. (2012). Introduction to Polymer Chemistry. CRC Press. https://books.google.com.tw/books?id=_izOBgAAQBAJ
Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2009.11.045
Chia, R. W., Lee, J. Y., Kim, H., & Jang, J.-H. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19, 4211 - 4224.
Chrysafi, I., Ainali, N. M., & Bikiaris, D. N. (2021). Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Lactic Acid) and Its Copolymers with Poly(Hexylene Succinate). Polymers (Basel), 13(9). https://doi.org/10.3390/polym13091365
Copinet, A., Bertrand, C., Govindin, S., Coma, V., & Couturier, Y. (2004). Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 55(5), 763-773. https://doi.org/https://doi.org/10.1016/j.chemosphere.2003.11.038
de França, J. O. C., da Silva Valadares, D., Paiva, M. F., Dias, S. C. L., & Dias, J. A. (2022). Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers (Basel), 14(12). https://doi.org/10.3390/polym14122317
Deetuam, C., Samthong, C., Choksriwichit, S., & Somwangthanaroj, A. (2020). Isothermal cold crystallization kinetics and properties of thermoformed poly (lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iranian Polymer Journal, 29, 103-116.
Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 108, 319-329. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2014.01.020
Di Lorenzo, M. L. (2006). Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). Journal of Applied Polymer Science, 100(4), 3145-3151. https://doi.org/https://doi.org/10.1002/app.23136
Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., & Sels, B. F. (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis [10.1039/C3EE00069A]. Energy & Environmental Science, 6(5), 1415-1442. https://doi.org/10.1039/C3EE00069A
EU COMMISSION, E. (2022). EU policy framework on biobased, biodegradable and compostable plastics
Fan, Y., Zhou, C., & Zhu, X. (2009). Selective Catalysis of Lactic Acid to Produce Commodity Chemicals. Catalysis Reviews, 51(3), 293-324. https://doi.org/10.1080/01614940903048513
Fang, Q., Chen, B., Lin, Y., & Guan, Y. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol, 48(1), 279-288. https://doi.org/10.1021/es403711y
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/https://doi.org/10.1016/j.addr.2016.06.012
Feng, L., Feng, S., Bian, X., Li, G., & Chen, X. (2018). Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability, 157, 212-223. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2018.10.008
Garratt, A., Nguyen, K., Brooke, A., Taylor, M. J., & Francesconi, M. G. (2023). Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid. ACS Environmental Au, 3(6), 342-347. https://doi.org/10.1021/acsenvironau.3c00040
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Sci Adv, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Gordobil, O., Egüés, I., Llano-Ponte, R., & Labidi, J. (2014). Physicochemical properties of PLA lignin blends. Polymer Degradation and Stability, 108, 330-338. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2014.01.002
Haafiz, M. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate polymers, 98(1), 139-145.
Han, Z.-M., Li, D.-H., Yang, H. B., Zhao, Y.-X., Yin, C. H., Yang, K.-P., Liu, H. C., Sun, W.-B., Ling, Z. C., Guan, Q.-F., & Yu, S.-H. (2022). Nacre‐Inspired Nanocomposite Films with Enhanced Mechanical and Barrier Properties by Self‐Assembly of Poly(Lactic Acid) Coated Mica Nanosheets. Advanced Functional Materials, 32. https://doi.org/10.1002/adfm.202202221
Haubruge, H., Daussin, R. D., Jonas, A. M., Legras, R., Wittmann, J. C., & Lotz, B. (2003). Epitaxial Nucleation of Poly(ethylene terephthalate) by Talc: Structure at the Lattice and Lamellar Scales. Macromolecules, 36, 4452-4456.
Henton, D. E., Gruber, P., Lunt, J., & Randall, J. (2005). Polylactic acid technology. Natural fibers, biopolymers, and biocomposites, 16, 527-577.
Hirao, K., Nakatsuchi, Y., & Ohara, H. (2010). Alcoholysis of Poly(l-lactic acid) under microwave irradiation. Polymer Degradation and Stability, 95(6), 925-928. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2010.03.027
Ho, K.-L. G., & Pometto III, A. L. (1999). Effects of electron-beam irradiation and ultraviolet light (365 nm) on polylactic acid plastic films. Journal of environmental polymer degradation, 7(2), 93-100.
Holten, C. H. (1971). Lactic acid. Properties and chemistry of lactic acid and derivatives.
Horváth, T., Marossy, K., & Szabó, T. J. (2022). Ring-opening polymerization and plasticization of poly(L-lactic)acid by adding of glycerol-dioleate. Journal of Thermal Analysis and Calorimetry, 147(3), 2221-2227. https://doi.org/10.1007/s10973-020-10540-1
Hu, X.-L., Mi, S., Lu, J.-L., Cao, J.-F., Xing, L.-Y., Lin, Z.-D., Chen, D.-L., Lu, Y., He, J., Xiong, C.-D., & Li, Q. (2021). In vitro degradation behavior of shape memory PLLA-TMC random copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126220. https://doi.org/https://doi.org/10.1016/j.colsurfa.2021.126220
Hu, X., He, J., Yong, X., Lu, J., Xiao, J., Liao, Y., Li, Q., & Xiong, C. (2020). Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 195, 111218. https://doi.org/https://doi.org/10.1016/j.colsurfb.2020.111218
Jadhav, N., Paradkar, A., Salunkhe, N., Karade, R., & Mane, G. (2013). Talc: A versatile pharmaceutical excipient. World Journal of Pharmacy and Pharmacutical Sciences, 2(2013), 4639-4660.
Jeon, H. J., & Kim, M. N. (2013). Biodegradation of poly (L-lactide)(PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration & Biodegradation, 85, 289-293.
Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromol Biosci, 7(3), 255-277. https://doi.org/10.1002/mabi.200600168
Karamanlioglu, M., & Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98, 2063-2071.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1247-1253. https://doi.org/10.1021/es9031419
Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 39(2), 267-273. https://doi.org/https://doi.org/10.1016/S0032-3861(97)00229-2
Kolstad, J. J. (1996). Crystallization kinetics of poly(L-lactide-co-meso-lactide). Journal of Applied Polymer Science, 62(7), 1079-1091. https://doi.org/https://doi.org/10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1
Kricheldorf, H. (2014). Wallace H. Carothers: Life and Work. In H. Kricheldorf (Ed.), Polycondensation: History and New Results (pp. 27-34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39429-4_3
Kricheldorf, H. R., & Kreiser, I. (1987). Polylactones, 11. Cationic copolymerization of glycolide with L,L-dilactide. Die Makromolekulare Chemie, 188(8), 1861-1873. https://doi.org/https://doi.org/10.1002/macp.1987.021880810
Lapienis, G. (2012). 4.18 - Ring-Opening Polymerization of Cyclic Phosphorus Monomers. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 477-505). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00113-8
Lee, C., Pang, M. M., Koay, S. C., Choo, H. L., & Tshai, K. Y. (2020). Talc filled polylactic-acid biobased polymer composites: tensile, thermal and morphological properties. SN Applied Sciences, 2(3), 354. https://doi.org/10.1007/s42452-020-2172-y
Li, S., Girard, A., Garreau, H., & Vert, M. (2000). Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polymer Degradation and Stability, 71(1), 61-67. https://doi.org/https://doi.org/10.1016/S0141-3910(00)00152-X
Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2008.05.004
Lowe, C. E. (1954). Preparation of high molecular weight polyhydroxyacetic ester. In: US.
MacDonald, R. T., McCarthy, S. P., & Gross, R. A. (1996). Enzymatic degradability of poly (lactide): effects of chain stereochemistry and material crystallinity. Macromolecules, 29(23), 7356-7361.
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/https://doi.org/10.1016/j.biortech.2010.05.092
Madras, G., & Chattopadhyay, S. (2001). Optimum temperature for oxidative degradation of poly(vinyl acetate) in solution. Chemical Engineering Science, 56(17), 5085-5089. https://doi.org/https://doi.org/10.1016/S0009-2509(01)00186-5
Magalhaes da Silva, S., Silva, M. A., & Oliveira, J. M. (2021). Non-isothermal cold crystallization kinetics of cork–polymer biocomposites based on polylactic acid for fused filament fabrication. Journal of Thermal Analysis and Calorimetry, 146(4), 1667-1678.
Markarian, J. (2008). Biopolymers present new market opportunities for additives in packaging. Plastics, Additives and Compounding, 10(3), 22-25. https://doi.org/https://doi.org/10.1016/S1464-391X(08)70091-6
Mokhena, T. C., Sefadi, J. S., Sadiku, E. R., John, M. J., Mochane, M. J., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers (Basel), 10(12). https://doi.org/10.3390/polym10121363
Moon, S. I., Lee, C. W., Miyamoto, M., & Kimura, Y. (2000). Melt polycondensation of L‐lactic acid with Sn (II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly (L‐lactic acid). Journal of Polymer Science Part A: Polymer Chemistry, 38(9), 1673-1679.
Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22), 8493-8501.
Nanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 20(1), 379-395. https://doi.org/10.1007/s10311-021-01334-4
Narayanan, N., Roychoudhury, P. K., & Srivastava, A. (2004). L (+) lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology, 7, 167-178.
Newman, A. W., Vitez, I. M., Cortina, P., Young, G., DeVincentis, J., Bugay, D. E., & Patel, T. (1994). Talc. In Analytical profiles of drug substances and excipients (Vol. 23, pp. 511-542). Elsevier.
Nim, B., & Opaprakasit, P. (2021). Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 255, 119684. https://doi.org/https://doi.org/10.1016/j.saa.2021.119684
Ninaya, Z. H. A., Hamid, Z. A. A., Ahmad, Z., Jaafar, M., & Yahaya, B. H. (2016). Development and Evaluation of Surface Modified Poly (lactic acid) Microsphere via Irradiation Techniques for Drug Delivery System. Procedia Chemistry, 19, 373-380. https://doi.org/https://doi.org/10.1016/j.proche.2016.03.026
Piemonte, V., & Gironi, F. (2013). Kinetics of Hydrolytic Degradation of PLA. Journal of Polymers and the Environment, 21(2), 313-318. https://doi.org/10.1007/s10924-012-0547-x
Piemonte, V., Sabatini, S., & Gironi, F. (2013). Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? Journal of Polymers and the Environment, 21(3), 640-647. https://doi.org/10.1007/s10924-013-0608-9
Pluta, M., Jeszka, J. K., & Boiteux, G. (2007). Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal, 43(7), 2819-2835. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2007.04.009
Pranamuda, H., Tokiwa, Y., & Tanaka, H. (1997). Polylactide degradation by an Amycolatopsis sp. Applied and environmental microbiology, 63(4), 1637-1640.
Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., & El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials (Basel), 15(12). https://doi.org/10.3390/ma15124312
Ren, J. (2011). Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer Science & Business Media.
Riba, J.-R., Cantero, R., García-Masabet, V., Cailloux, J., Canals, T., & Maspoch, M. L. (2020). Multivariate identification of extruded PLA samples from the infrared spectrum. Journal of Materials Science, 55(3), 1269-1279. https://doi.org/10.1007/s10853-019-04091-6
Ritch, E., Brennan, C., & MacLeod, C. (2009). Plastic bag politics: modifying consumer behaviour for sustainable development. International Journal of Consumer Studies, 33(2), 168-174. https://doi.org/https://doi.org/10.1111/j.1470-6431.2009.00749.x
Shi, K., Liu, G., Sun, H., Yang, B., & Weng, Y. (2022). Effect of Biomass as Nucleating Agents on Crystallization Behavior of Polylactic Acid. Polymers (Basel), 14(20). https://doi.org/10.3390/polym14204305
Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. https://doi.org/https://doi.org/10.1016/j.tifs.2008.07.003
Smith, J. K., & Hounshell, D. A. (1985). Wallace H. Carothers and Fundamental Research at Du Pont. Science, 229(4712), 436-442. http://www.jstor.org/stable/1695650
Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current Development of Biodegradable Polymeric Materials for Biomedical Applications. Drug Design, Development and Therapy, Volume 12, 3117-3145. https://doi.org/10.2147/DDDT.S165440
Sriphong, L., Rojanarata, T., Gasser, C., & Lend, B. (2018). At-line analysis of pharmaceutical nanofiber-products using ATR-FTIR spectroscopy.
Statista. (2023). report, B.R., Global markets and technologies for bioplastics. 2023. https://www.statista.com/topics/8744/bioplastics-industry-worldwide/#topicOverview
Thoden van Velzen, E. U., Chu, S., Molenveld, K., & Jašo, V. (2022). Effect of poly lactic acid trays on the optical and thermal properties of recycled poly (ethylene terephthalate). Packaging Technology and Science, 35(4), 351-360. https://doi.org/https://doi.org/10.1002/pts.2633
Tian, S., Jiao, Y., Gao, Z., Xu, Y., Fu, L., Fu, H., Zhou, W., Hu, C., Liu, G., Wang, M., & Ma, D. (2021). Catalytic Amination of Polylactic Acid to Alanine. Journal of the American Chemical Society, 143(40), 16358-16363. https://doi.org/10.1021/jacs.1c08159
Tokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly (lactide). Applied microbiology and biotechnology, 72(2), 244-251.
Tounthai, J., Petchsuk, A., Opaprakasit, P., & Opaprakasit, M. (2013). Curable polyester precursors from polylactic acid glycolyzed products. Polymer Bulletin, 70(8), 2223-2238. https://doi.org/10.1007/s00289-013-0940-1
Tsuji, H., & Miyauchi, S. (2001). Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region. Polymer degradation and stability, 71(3), 415-424.
Tsuneizumi, Y., Kuwahara, M., Okamoto, K., & Matsumura, S. (2010). Chemical recycling of poly(lactic acid)-based polymer blends using environmentally benign catalysts. Polymer Degradation and Stability, 95(8), 1387-1393. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2010.01.019
Usuki, A., Kato, M., Okada, A., & Kurauchi, T. (1997). Synthesis of polypropylene-clay hybrid. Journal of Applied Polymer Science, 63(1), 137-138. https://doi.org/https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<137::AID-APP15>3.0.CO;2-2
Vink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/https://doi.org/10.1016/S0141-3910(02)00372-5
Weraporn, & Pivsa-Art, S. (2019). Effect of Talc on Mechanical Characteristics and Fracture Toughness of Poly(lactic acid)/Poly(butylene succinate) Blend. Journal of Polymers and the Environment, 27(8), 1821-1827. https://doi.org/10.1007/s10924-019-01478-z
Williams, D. F. (1982). Biodegradation of surgical polymers. Journal of Materials Science, 17(5), 1233-1246. https://doi.org/10.1007/BF00752233
Xiang, S., Feng, L., Bian, X., Li, G., & Chen, X. (2020). Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing, 81, 106211. https://doi.org/https://doi.org/10.1016/j.polymertesting.2019.106211
Yagi, H., Ninomiya, F., Funabashi, M., & Kunioka, M. (2009). Anaerobic Biodegradation Tests of Poly(lactic acid) under Mesophilic and Thermophilic Conditions Using a New Evaluation System for Methane Fermentation in Anaerobic Sludge. International Journal of Molecular Sciences, 10(9), 3824-3835.
Yuan, Z., Zhang, X., Yao, Q., Zhang, Y., & Fu, Y. (2019). Production of acetonitrile via catalytic fast pyrolysis of biomass derived polylactic acid under ammonia atmosphere. Journal of Analytical and Applied Pyrolysis, 140, 376-384. https://doi.org/https://doi.org/10.1016/j.jaap.2019.04.017
Yuxia, Z. (2012). Crystallization Behavior and Mechanical Properties of Poly(lactic acid)/Talc Systems.
Zhou, L., Ke, K., Yang, M.-B., & Yang, W. (2021). Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review. Composites Communications, 23, 100548. https://doi.org/https://doi.org/10.1016/j.coco.2020.100548
Zhu, Z., Bian, Y., Zhang, X., Zeng, R., & Yang, B. (2022). Study of Crystallinity and Conformation of Poly(lactic acid) by Terahertz Spectroscopy. Analytical Chemistry, 94(31), 11104-11111. https://doi.org/10.1021/acs.analchem.2c02652
Zhu, Z., Yu, Z., Bian, Y., Zhang, X., Zeng, R., & Yang, B. (2023). Evaluation of relative content and crystallization behavior of homogeneous crystals in poly (lactic acid) by terahertz spectroscopy. Polymer, 270, 125779. https://doi.org/https://doi.org/10.1016/j.polymer.2023.125779
丁亞涵, & 羅凱尹. (2021). 生物可分解性塑膠聚乳酸的降解條件研究 [Study of the Degradation Conditions of Biodegradable Plastics Polylactic Acid]. 臺灣農業化學與食品科學, 59(1), 11-17. https://doi.org/10.6578/TJACFS.202103_59(1).0003
朱國福. (2015). 聚乳酸/聚羥基丁酯摻合物熱裂解及生物可分解行為研究 (Publication Number 2015年) 淡江大學]. AiritiLibrary.
周泓佳. (2012). 生物可分解含聚乳酸奈米複合材料之開發應用於工程塑膠 (Publication Number 2012年) 國立臺灣大學]. AiritiLibrary.
林銘貴, & 尤浚達. (2003). 生物可分解性高分子 : 聚乳酸之應用與發展潛力評估 / 林銘貴計畫主持 ; 尤浚達作作 (初版 ed.). 工業技術研究院產業經濟與資訊服務中心.
塗三賢, 李. (2012). 成核劑對射出成型木粉-聚乳酸複合材強度性質之影響 [Effects of Nucleating Agent on Mechanical Properties of Injection Molding Wood Flour-Polylactic Acid Composite]. 林產工業, 31(1), 1-6. https://doi.org/10.6561/fpi.2012.31(1).1
潘祖仁. (2021). 高分子化学. 化学工业出版社.
鄒智元, 「聚乳酸/木粉、聚乳酸/聚對苯二甲酸丙二醇與聚乳酸/細菌纖維素複合材料之研究」,博士論文,臺北市,國立臺北科技大學(2017)。
巫承德, 「剪切作用對聚丙烯冷卻過程中的高階結構形成之影響」,碩士論文,新竹市 國立陽明交通大學(2003)。
尤中甫, 「多官能基壓克力修飾聚乳酸之合成與應用」,博士論文,臺北市 國立臺北科技大學(2023)。
尤浚達, 「聚乳酸–最具發展潛力的生分解材料」,塑膠百年特刊,塑膠工業技術發展中心,(2008)。
陳忠吾, 「淺談生物可分解型塑膠–PLA」,聚乳酸PLA生質材料發展現況及應用趨勢討會,臺中市(2008)。 |