參考文獻 |
(1) Organization, W. H. Global action plan on antimicrobial resistance. 2015. https://unfoundation.org/what-we-do/issues/global-health/pandemic-accord-actualizing-ambition-in-2023/?gclid=Cj0KCQjw1_SkBhDwARIsANbGpFsTgagTqJuCrIIocjMQmA4WmBGz2DaVBS8Gj86GjJpa1Y1gL19Yc5saAn_HEALw_wcB (accessed.
(2) Shallcross, L. J.; Howard, S. J.; Fowler, T.; Dayies, S. C. Tackling the threat of antimicrobial resistance: from policy to sustainable action. Philos. Trans. R. Soc. B-Biol. Sci. 2015, 370 (1670), 5, Article; Proceedings Paper. DOI: 10.1098/rstb.2014.0082.
(3) O′Neill, J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
(4) McGowan, J. E. Economic impact of antimicrobial resistance. Emerg. Infect. Dis 2001, 7 (2), 286-292, Article; Proceedings Paper. DOI: 10.3201/eid0702.010228.
(5) San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018, 26 (12), 978-985, Review. DOI: 10.1016/j.tim.2018.06.007.
(6) 維基百科. 抗生素抗藥性. 2020.
(7) Islam, M. S.; Hossain, M. J.; Sobur, M. A.; Punom, S. A.; Rahman, A.; Rahman, M. T. A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. BioMed Research International 2023, 2023.
(8) van Harten, R. M.; Willems, R. J.; Martin, N. I.; Hendrickx, A. P. Multidrug-resistant enterococcal infections: new compounds, novel antimicrobial therapies? Trends Microbiol. 2017, 25 (6), 467-479.
(9) Asadollahi, P.; Razavi, S.; Asadollahi, K.; Pourshafie, M.; Talebi, M. Rise of antibiotic resistance in clinical enterococcal isolates during 2001–2016 in Iran: a review. New microbes and new infections 2018, 26, 92-99.
(10) Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics 2015, 40 (4), 277.
(11) Santos, L.; Ramos, F. Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents 2018, 52 (2), 135-143.
(12) Shen, Z.; Wang, Y.; Shen, Y.; Shen, J.; Wu, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. The Lancet infectious diseases 2016, 16 (3), 293.
(13) 王亚楠; 胡永飞; 朱宝利; 焦新安; 高福. 养殖动物及其相关环境耐药组的研究进展. 生物工程学报 2018, 34 (8), 1226-1233.
(14) Dodd, M. C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring 2012, 14 (7), 1754-1771.
(15) Schwarz, S.; Loeffler, A.; Kadlec, K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Advances in Veterinary Dermatology 2017, 8, 95-110.
(16) Wright, G. D. Antibiotic resistance in the environment: a link to the clinic? Current opinion in microbiology 2010, 13 (5), 589-594.
(17) Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65 (5), 725-759.
(18) Knapp, C. W.; Engemann, C. A.; Hanson, M. L.; Keen, P. L.; Hall, K. J.; Graham, D. W. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 2008, 42 (14), 5348-5353.
(19) Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321 (5887), 365-367.
(20) Sandegren, L. Selection of antibiotic resistance at very low antibiotic concentrations. Upsala journal of medical sciences 2014, 119 (2), 103-107.
(21) Klerks, M. M.; Franz, E.; van Gent-Pelzer, M.; Zijlstra, C.; Van Bruggen, A. H. Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. The ISME journal 2007, 1 (7), 620-631.
(22) McLaughlin, M. R.; Brooks, J. P.; Adeli, A. Characterization of selected nutrients and bacteria from anaerobic swine manure lagoons on sow, nursery, and finisher farms in the Mid‐South USA. Journal of environmental quality 2009, 38 (6), 2422-2430.
(23) McEwen, S. A. Human health importance of use of antimicrobials in animals and its selection of antimicrobial resistance. Antimicrobial Resistance In The Environment. Canada: Wiley-Blackwell 2012, 391-423.
(24) Yuan, W.; Tian, T. T.; Yang, Q. X.; Riaz, L. Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources. Chemosphere 2020, 246, 9, Article. DOI: 10.1016/j.chemosphere.2019.125736.
(25) Zhao, R.; Liu, J.; Feng, J.; Li, X.; Li, B. Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Sci. Total Environ. 2021, 767, 144861.
(26) Bhatt, A. H.; Karanjekar, R. V.; Altouqi, S.; Sattler, M. L.; Hossain, M. D. S.; Chen, V. P. Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environ. Technol. Innov. 2017, 8, 1-16, Article. DOI: 10.1016/j.eti.2017.03.003.
(27) K Kocadal 1 , F. B. A., D Battal 1, 2 , S Saygi 1. 重金屬暴露引起的細胞病理學和遺傳毒性效應. Human & Experimental Toxicology ( IF 3.247 ) 2019.
(28) Codina, J. C.; Cazorla, F. M.; Pérez‐García, A.; de Vicente, A. Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environmental Toxicology and Chemistry: An International Journal 2000, 19 (6), 1552-1558.
(29) Levy, S. B. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 2002, 49 (1), 25-30, Editorial Material. DOI: 10.1093/jac/49.1.25.
(30) Seiler, C.; Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 10, Review. DOI: 10.3389/fmicb.2012.00399.
(31) Zhang, J.; Xu, Y.; Luo, Y.; Mao, D. Co-selection mechanisms of bacterial resistance to heavy metals and antibiotics. Journal of Agro-Environment Science 2016, 35 (3), 409-418.
(32) Yuan, L.; Li, Z.-H.; Zhang, M.-Q.; Shao, W.; Fan, Y.-Y.; Sheng, G.-P. Mercury/silver resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant. Sci. Total Environ. 2019, 657, 1014-1022.
(33) Zhang, J.; Lu, T.; Chai, Y.; Sui, Q.; Shen, P.; Wei, Y. Which animal type contributes the most to the emission of antibiotic resistance genes in large-scale swine farms in China? Sci. Total Environ. 2019, 658, 152-159.
(34) Yang, Q.; Ren, S.; Niu, T.; Guo, Y.; Qi, S.; Han, X.; Liu, D.; Pan, F. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables. Environmental Science and Pollution Research 2014, 21, 1231-1241.
(35) Nesme, J.; Cécillon, S.; Delmont, T. O.; Monier, J.-M.; Vogel, T. M.; Simonet, P. Large-scale metagenomic-based study of antibiotic resistance in the environment. Current biology 2014, 24 (10), 1096-1100.
(36) Landers, T. F.; Cohen, B.; Wittum, T. E.; Larson, E. L. A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports 2012, 127 (1), 4-22.
(37) Chang, Q.; Wang, W.; Regev‐Yochay, G.; Lipsitch, M.; Hanage, W. P. Antibiotics in agriculture and the risk to human health: how worried should we be? Evolutionary applications 2015, 8 (3), 240-247.
(38) Chen, J.; Yu, Z.; Michel Jr, F. C.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and environmental microbiology 2007, 73 (14), 4407-4416.
(39) Selvam, A.; Xu, D.; Zhao, Z.; Wong, J. W. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol. 2012, 126, 383-390.
(40) Wang, L.; Oda, Y.; Grewal, S.; Morrison, M.; Michel, F. C.; Yu, Z. Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. Microb. Ecol. 2012, 63, 32-40.
(41) Wang, J.; Ben, W.; Zhang, Y.; Yang, M.; Qiang, Z. Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure. Environmental Science: Processes & Impacts 2015, 17 (9), 1654-1660.
(42) Wang, M.; Liu, P.; Xiong, W.; Zhou, Q.; Wangxiao, J.; Zeng, Z.; Sun, Y. Fate of potential indicator antimicrobial resistance genes (ARGs) and bacterial community diversity in simulated manure-soil microcosms. Ecotox. Environ. Safe. 2018, 147, 817-823.
(43) Wu, C.; Shi, L.; Xue, S.; Li, W.; Jiang, X.; Rajendran, M.; Qian, Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 2019, 647, 1158-1168.
(44) Dolliver, H.; Gupta, S.; Noll, S. Antibiotic degradation during manure composting. Journal of environmental quality 2008, 37 (3), 1245-1253.
(45) Ray, P.; Chen, C. Q.; Knowlton, K. F.; Pruden, A.; Xia, K. Fate and Effect of Antibiotics in Beef and Dairy Manure during Static and Turned Composting. Journal of Environmental Quality 2017, 46 (1), 45-54, Article. DOI: 10.2134/jeq2016.07.0269.
(46) Shan, S.; Wang, H.; Fang, C.; Chu, Y.; Jiang, L. Effects of adding biochar on tetracycline removal during anaerobic composting of swine manure. Chemistry and Ecology 2018, 34 (1), 86-97.
(47) Chen, J.; Michel, F. C.; Sreevatsan, S.; Morrison, M.; Yu, Z. Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms. Microb. Ecol. 2010, 60, 479-486.
(48) Marti, R.; Tien, Y.-C.; Murray, R.; Scott, A.; Sabourin, L.; Topp, E. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? Applied and environmental microbiology 2014, 80 (10), 3258-3265.
(49) Jindal, A.; Kocherginskaya, S.; Mehboob, A.; Robert, M.; Mackie, R. I.; Raskin, L.; Zilles, J. L. Antimicrobial use and resistance in swine waste treatment systems. Applied and Environmental Microbiology 2006, 72 (12), 7813-7820, Article. DOI: 10.1128/aem.01087-06.
(50) Diehl, D. L.; LaPara, T. M. Effect of Temperature on the Fate of Genes Encoding Tetracycline Resistance and the Integrase of Class 1 Integrons within Anaerobic and Aerobic Digesters Treating Municipal Wastewater Solids. Environ. Sci. Technol. 2010, 44 (23), 9128-9133, Article. DOI: 10.1021/es102765a.
(51) Ma, Y. J.; Wilson, C. A.; Novak, J. T.; Riffat, R.; Aynur, S.; Murthy, S.; Prudens, A. Effect of Various Sludge Digestion Conditions on Sulfonamide, Macrolide, and Tetracycline Resistance Genes and Class I Integrons. Environ. Sci. Technol. 2011, 45 (18), 7855-7861, Article. DOI: 10.1021/es200827t.
(52) Sui, Q. W.; Zhang, J. Y.; Chen, M. X.; Tong, J.; Wang, R.; Wei, Y. S. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater. Environmental Pollution 2016, 213, 751-759, Article. DOI: 10.1016/j.envpol.2016.03.038.
(53) Sun, W.; Qian, X.; Gu, J.; Wang, X. J.; Duan, M. L. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Sci Rep 2016, 6, 9, Article. DOI: 10.1038/srep30237.
(54) Luo, G.; Li, B.; Li, L. G.; Zhang, T.; Angelidaki, I. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis. Environ. Sci. Technol. 2017, 51 (7), 4069-4080, Article. DOI: 10.1021/acs.est.6b05100.
(55) Ray, P.; Chen, C.; Knowlton, K. F.; Pruden, A.; Xia, K. Fate and effect of antibiotics in beef and dairy manure during static and turned composting. Journal of Environmental Quality 2017, 46 (1), 45-54.
(56) Wallace, J. S.; Garner, E.; Pruden, A.; Aga, D. S. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environmental Pollution 2018, 236, 764-772, Article. DOI: 10.1016/j.envpol.2018.02.024.
(57) 張智聖. 抗生素抗性菌與抗性基因在污水處理程序中的動態變化. 國立中央大學 2019.
(58) Yu, J.; Zhao, L.; Feng, J.; Yao, Z.; Huang, K.; Luo, J. Influence factors of batch dry anaerobic digestion for corn stalks-cow dung mixture. Transactions of the Chinese Society of Agricultural Engineering 2018, 34 (15), 215-221.
(59) Pandyaswargo, A. H.; Premakumara, D. G. J. Financial sustainability of modern composting: the economically optimal scale for municipal waste composting plant in developing Asia. International Journal of Recycling of Organic Waste in Agriculture 2014, 3, 1-14.
(60) Garfí, M.; Martí-Herrero, J.; Garwood, A.; Ferrer, I. Household anaerobic digesters for biogas production in Latin America: A review. Renewable and sustainable energy reviews 2016, 60, 599-614.
(61) 林子晞. 沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討. 中央大學 2022.
(62) 鄭念媛. 不同料源製成之市售堆肥其抗生素抗性基因含量調查. 中央大學 2022.
(63) 環檢所. 水中化學需氧量檢測方法 密閉式重鉻酸鉀迴流法. 2018. https://www.epa.gov.tw/DisplayFile.aspx?FileID=C9A4AC5E8472614E (accessed.
(64) 鄧教毅. 重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響. 國立中央大學 2018.
(65) Urbanova, M.; Kopecky, J.; Valaskova, V.; Sagova-Mareckova, M.; Elhottova, D.; Kyselkova, M.; Moenne-Loccoz, Y.; Baldrian, P. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiol. Ecol. 2011, 78 (1), 59-69, Article. DOI: 10.1111/j.1574-6941.2011.01164.x.
(66) Zhu, Y.-G.; Zhu, D.; Delgado-Baquerizo, M.; Su, J.-Q.; Ding, J.; Li, H.; Gillings, M. R.; Penuelas, J. Difference of microbiome and antibiotic resistome between earthworm gut and soil deciphered by a continental-scale survey. 2020.
(67) Ng, L. K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15 (4), 209-215, Article. DOI: 10.1006/mcpr.2001.0363.
(68) Ahmed, M. O.; Clegg, P. D.; Williams, N. J.; Baptiste, K. E.; Bennett, M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7, Article. DOI: 10.1186/1476-0711-9-12.
(69) Aminov, R. I.; Garrigues-Jeanjean, N.; Mackie, R. I. Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Applied and Environmental Microbiology 2001, 67 (1), 22-32, Article. DOI: 10.1128/aem.67.1.22-32.2001.
(70) Mu, Q. H.; Li, J.; Sun, Y. X.; Mao, D. Q.; Wang, Q.; Luo, Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research 2015, 22 (9), 6932-6940, Article. DOI: 10.1007/s11356-014-3905-5.
(71) Miao, J. J.; Yin, Z. D.; Yang, Y. Q.; Liang, Y. W.; Xu, X. D.; Shi, H. M. Abundance and Dynamic Distribution of Antibiotic Resistance Genes in the Environment Surrounding a Veterinary Antibiotic Manufacturing Site. Antibiotics-Basel 2021, 10 (11), 15, Article. DOI: 10.3390/antibiotics10111361.
(72) Henderson, M.; Ergas, S. J.; Ghebremichael, K.; Gross, A.; Ronen, Z. Occurrence of Antibiotic-Resistant Genes and Bacteria in Household Greywater Treated in Constructed Wetlands. Water 2022, 14 (5), 16, Article. DOI: 10.3390/w14050758.
(73) Lin, H.; Chapman, S. J.; Freitag, T. E.; Kyle, C.; Ma, J. W.; Yang, Y. Y.; Zhang, Z. L. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Ecotox. Environ. Safe. 2019, 170, 39-46, Article. DOI: 10.1016/j.ecoenv.2018.11.059.
(74) Kim, J.; Lim, Y. M.; Jeong, Y. S.; Seol, S. Y. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrobial Agents and Chemotherapy 2005, 49 (4), 1572-1575, Article. DOI: 10.1128/aac.49.4.1572-1575.2005.
(75) Marti, E.; Jofre, J.; Balcazar, J. L. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS One 2013, 8 (10), 8, Article. DOI: 10.1371/journal.pone.0078906.
(76) Xi, C. W.; Zhang, Y. L.; Marrs, C. F.; Ye, W.; Simon, C.; Foxman, B.; Nriagu, J. Prevalence of Antibiotic Resistance in Drinking Water Treatment and Distribution Systems. Applied and Environmental Microbiology 2009, 75 (17), 5714-5718, Article. DOI: 10.1128/aem.00382-09.
(77) Alexander, J.; Bollmann, A.; Seitz, W.; Schwartz, T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci. Total Environ. 2015, 512, 316-325, Article. DOI: 10.1016/j.scitotenv.2015.01.046.
(78) Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E. T.; Schwartz, T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 11, Article. DOI: 10.3389/fmicb.2017.01282.
(79) Chen, J.; Yu, Z. T.; Michel, F. C.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and Environmental Microbiology 2007, 73 (14), 4407-4416, Article. DOI: 10.1128/aem.02799-06.
(80) Luo, Y.; Mao, D. Q.; Rysz, M.; Zhou, D. X.; Zhang, H. J.; Xu, L.; Alvarez, P. J. J. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44 (19), 7220-7225, Article. DOI: 10.1021/es100233w.
(81) Liao, J. Q.; Chen, Y. G. Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Rev. Environ. Sci. Bio-Technol. 2018, 17 (3), 471-500, Review. DOI: 10.1007/s11157-018-9469-y.
(82) Xu, S. B.; Chen, M. J.; Feng, T. Z.; Zhan, L.; Zhou, L.; Yu, G. C. Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021, 12, 7, Article. DOI: 10.3389/fgene.2021.774846.
(83) Zhu, Y.-G.; Zhao, Y.; Zhu, D.; Gillings, M.; Penuelas, J.; Ok, Y. S.; Capon, A.; Banwart, S. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 2019, 131, 105059.
(84) Zhang, R. R.; Wang, X. J.; Gu, J.; Zhang, Y. J. Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure. Bioresour. Technol. 2017, 244, 63-70, Article. DOI: 10.1016/j.biortech.2017.07.032.
(85) 行政院農業委員會. 肥料種類品目及規格. 2000. https://law.coa.gov.tw/glrsnewsout/LawContent.aspx?id=FL014452 (accessed.
(86) 維基百科. 求和符號. 2023.
(87) 林子晞. 沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討. 國立中央大學 2010.
(88) Wolters, B.; Ding, G. C.; Kreuzig, R.; Smalla, K. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 2016, 92 (2), 17, Article. DOI: 10.1093/femsec/fiv163.
(89) Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D. J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC genomics 2015, 16, 1-14.
(90) Liu, L.; Liu, X.; Wang, H.; Zhao, H.; Yu, C.; Leng, J.; Geng, C.; Li, Z. Influence of water quality on sulfonamide resistance gene Sul1. Journal of Agro-Environment Science 2018, 37 (3), 515-519.
(91) Zhang, R. R.; Gu, J.; Wang, X. J.; Qian, X.; Duan, M. L.; Sun, W.; Zhang, Y. J.; Li, H. C.; Li, Y. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure. Bioresour. Technol. 2017, 225, 343-358, Article. DOI: 10.1016/j.biortech.2016.10.057.
(92) Chan, R.; Chiemchaisri, C.; Chiemchaisri, W.; Boonsoongnern, A.; Tulayakul, P. Occurrence of antibiotics in typical pig farming and its wastewater treatment in Thailand. Emerging Contaminants 2022, 8, 21-29.
(93) Youngquist, C. P.; Mitchell, S. M.; Cogger, C. G. Fate of antibiotics and antibiotic resistance during digestion and composting: a review. Journal of environmental quality 2016, 45 (2), 537-545.
(94) Zou, Y. N.; Xiao, Y.; Wang, H.; Fang, T. T.; Dong, P. Y. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 2020, 384, 9, Article. DOI: 10.1016/j.jhazmat.2019.121433.
(95) Flores-Orozco, D.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures. Sci. Total Environ. 2022, 814, 13, Article. DOI: 10.1016/j.scitotenv.2021.152711.
(96) Flores-Orozco, D.; Patidar, R.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. Metagenomic analyses reveal that mesophilic anaerobic digestion substantially reduces the abundance of antibiotic resistance genes and mobile genetic elements in dairy manures. Environ. Technol. Innov. 2023, 30, 13, Article. DOI: 10.1016/j.eti.2023.103128.
(97) Khafipour, A.; Jordaan, E. M.; Flores-Orozco, D.; Khafipour, E.; Levin, D. B.; Sparling, R.; Cicek, N. Response of microbial community to induced failure of anaerobic digesters through overloading with propionic acid followed by process recovery. Frontiers in Bioengineering and Biotechnology 2020, 8, 604838.
(98) Wolak, I.; Czatzkowska, M.; Harnisz, M.; Jastrzębski, J. P.; Paukszto, Ł.; Rusanowska, P.; Felis, E.; Korzeniewska, E. Metagenomic analysis of the long-term synergistic effects of antibiotics on the anaerobic digestion of cattle manure. Energies 2022, 15 (5), 1920.
(99) Roberts, A. P.; Mullany, P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 2009, 17 (6), 251-258.
(100) Gao, F. Z.; He, L. Y.; He, L. X.; Zou, H. Y.; Zhang, M.; Wu, D. L.; Liu, Y. S.; Shi, Y. J.; Bai, H.; Ying, G. G. Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. Sci. Total Environ. 2020, 741, 12, Article. DOI: 10.1016/j.scitotenv.2020.140482.
(101) Gao, F. Z.; He, L. Y.; Bai, H.; He, L. X.; Zhang, M.; Chen, Z. Y.; Liu, Y. S.; Ying, G. G. Airborne bacterial community and antibiotic resistome in the swine farming environment: Metagenomic insights into livestock relevance, pathogen hosts and public risks. Environ. Int. 2023, 172, 11, Article. DOI: 10.1016/j.envint.2023.107751.
(102) Dong, L.; Meng, L.; Liu, H.; Wu, H.; Hu, H.; Zheng, N.; Wang, J.; Schroyen, M. Effect of therapeutic administration of β-lactam antibiotics on the bacterial community and antibiotic resistance patterns in milk. Journal of Dairy Science 2021, 104 (6), 7018-7025.
(103) Liu, Y. T.; Zheng, L.; Cai, Q. J.; Xu, Y. B.; Xie, Z. F.; Liu, J. Y.; Ning, X. N. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. Ecotox. Environ. Safe. 2021, 208, 11, Article. DOI: 10.1016/j.ecoenv.2020.111724.
(104) Cheng, W.; Li, J.; Wu, Y.; Xu, L.; Su, C.; Qian, Y.; Zhu, Y.-G.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: a case study. J. Hazard. Mater. 2016, 304, 18-25.
(105) Han, B.; Yang, F.; Tian, X.; Mu, M.; Zhang, K. Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotox. Environ. Safe. 2021, 219, 112335.
(106) Sun, C. X.; Li, W.; Chen, Z.; Qin, W. T.; Wen, X. H. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int. 2019, 133, 11, Article. DOI: 10.1016/j.envint.2019.105156.
(107) Liu, M. M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L. R.; Zhang, S. J. Abundance and Distribution of Tetracycline Resistance Genes and Mobile Elements in an Oxytetracycline Production Wastewater Treatment System. Environ. Sci. Technol. 2012, 46 (14), 7551-7557, Article. DOI: 10.1021/es301145m.
(108) Sun, W.; Gu, J.; Wang, X.; Qian, X.; Peng, H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 2019, 274, 287-295.
(109) Han, Z. M.; Feng, H. D.; Luan, X.; Shen, Y. P.; Ren, L. R.; Deng, L. J.; Larsson, D. G. J.; Gillings, M.; Zhang, Y.; Yang, M. Three-Year Consecutive Field Application of Erythromycin Fermentation Residue Following Hydrothermal Treatment: Cumulative Effect on Soil Antibiotic Resistance Genes. Engineering 2022, 15, 78-88, Article. DOI: 10.1016/j.eng.2022.05.011.
(110) Chee‐Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of environmental quality 2009, 38 (3), 1086-1108.
(111) Nigro, S. J.; Farrugia, D. N.; Paulsen, I. T.; Hall, R. M. A novel family of genomic resistance islands, AbGRI2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. J. Antimicrob. Chemother. 2013, 68 (3), 554-557.
(112) Guo, X.-p.; Liu, X.; Niu, Z.-s.; Lu, D.-p.; Zhao, S.; Sun, X.-l.; Wu, J.-y.; Chen, Y.-r.; Tou, F.-y.; Hou, L. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environmental Pollution 2018, 242, 576-584.
(113) Xu, Y.; Xu, J.; Mao, D. Q.; Luo, Y. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environmental Pollution 2017, 220, 900-908, Article. DOI: 10.1016/j.envpol.2016.10.074.
(114) Silva, F.; Queiroz, J. A.; Domingues, F. C. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology advances 2012, 30 (3), 691-708.
(115) Liao, H.; Lu, X.; Rensing, C.; Friman, V. P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.; Zhu, Y. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ. Sci. Technol. 2018, 52 (1), 266-276.
(116) Zhou, J.; Guan, D. W.; Zhou, B. K.; Zhao, B. S.; Ma, M. C.; Qin, J.; Jiang, X.; Chen, S. F.; Cao, F. M.; Shen, D. L.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42-51, Article. DOI: 10.1016/j.soilbio.2015.07.005.
(117) Pan, J. M.; Zheng, N.; An, Q. R.; Li, Y. Y.; Sun, S. Y.; Zhang, W. H.; Song, X. Effects of cadmium and copper mixtures on antibiotic resistance genes in rhizosphere soil. Ecotox. Environ. Safe. 2023, 259, 13, Article. DOI: 10.1016/j.ecoenv.2023.115008.
(118) Pan, X.; Chen, Z. Y.; Zhai, W. L.; Dong, L.; Lin, L.; Li, Y.; Yang, Y. Y. Distribution of antibiotic resistance genes in the sediments of Erhai Lake, Yunnan-Kweichow Plateau, China: Their linear relations with nonpoint source pollution discharges from 26 tributaries. Environmental Pollution 2023, 316, 7, Article. DOI: 10.1016/j.envpol.2022.120471.
(119) Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D. J.; Larsson, D. J.; Hobman, J. L. Metal resistance and its association with antibiotic resistance. Advances in microbial physiology 2017, 70, 261-313.
(120) Levy, S. Active efflux, a common mechanism for biocide and antibiotic resistance. Journal of applied microbiology 2002, 92 (s1), 65S-71S.
(121) Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS microbiology reviews 2003, 27 (2-3), 313-339.
(122) Imran, M.; Das, K. R.; Naik, M. M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 2019, 215, 846-857, Article. DOI: 10.1016/j.chemosphere.2018.10.114.
(123) Rosenfeld, C. S. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front. Cell. Infect. Microbiol. 2017, 7, 17, Review. DOI: 10.3389/fcimb.2017.00396.
(124) Zhao, X. Q.; Huang, J.; Lu, J.; Sun, Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotox. Environ. Safe. 2019, 170, 218-226, Article. DOI: 10.1016/j.ecoenv.2018.11.136.
(125) Xie, W. Y.; Shen, Q.; Zhao, F. Antibiotics and antibiotic resistance from animal manures to soil: a review. European journal of soil science 2018, 69 (1), 181-195.
(126) Cheng, W. X.; Li, J. N.; Wu, Y.; Xu, L. K.; Su, C.; Qian, Y. Y.; Zhu, Y. G.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. J. Hazard. Mater. 2016, 304, 18-25, Article. DOI: 10.1016/j.jhazmat.2015.10.037.
(127) Chen, Q. L.; An, X. L.; Li, H.; Su, J. Q.; Ma, Y. B.; Zhu, Y. G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92-93, 1-10, Article. DOI: 10.1016/j.envint.2016.03.026.
(128) Cerqueira, F.; Matamoros, V.; Bayona, J.; Pina, B. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. Sci. Total Environ. 2019, 652, 660-670, Article. DOI: 10.1016/j.scitotenv.2018.10.268.
(129) Hou, J.; Wan, W. N.; Mao, D. Q.; Wang, C.; Mu, Q. H.; Qin, S. Y.; Luo, Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environmental Science and Pollution Research 2015, 22 (6), 4545-4554, Article. DOI: 10.1007/s11356-014-3632-y.
(130) Kang, Y. J.; Hao, Y. Y.; Shen, M.; Zhao, Q. X.; Li, Q.; Hu, J. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotox. Environ. Safe. 2016, 130, 279-288, Article. DOI: 10.1016/j.ecoenv.2016.04.028.
(131) Rahman, M. M.; Shan, J.; Yang, P. P.; Shang, X. X.; Xia, Y. Q.; Yan, X. Y. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution 2018, 240, 368-377, Article. DOI: 10.1016/j.envpol.2018.04.135.
(132) Marti, R.; Tien, Y. C.; Murray, R.; Scott, A.; Sabourin, L.; Topp, E. Safely Coupling Livestock and Crop Production Systems: How Rapidly Do Antibiotic Resistance Genes Dissipate in Soil following a Commercial Application of Swine or Dairy Manure? Applied and Environmental Microbiology 2014, 80 (10), 3258-3265, Article. DOI: 10.1128/aem.00231-14.
(133) Hong, P. Y.; Yannarell, A. C.; Dai, Q. H.; Ekizoglu, M.; Mackie, R. I. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities. Applied and Environmental Microbiology 2013, 79 (8), 2620-2629, Article. DOI: 10.1128/aem.03760-12.
(134) Armalyte, J.; Skerniskyte, J.; Bakiene, E.; Krasauskas, R.; Siugzdiniene, R.; Kareiviene, V.; Kerziene, S.; Klimiene, I.; Suziedeliene, E.; Ruzauskas, M. Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Front. Microbiol. 2019, 10, 12, Article. DOI: 10.3389/fmicb.2019.00892.
(135) Rothrock Jr, M. J.; Keen, P. L.; Cook, K. L.; Durso, L. M.; Franklin, A. M.; Dungan, R. S. How should we be determining background and baseline antibiotic resistance levels in agroecosystem research? Journal of environmental quality 2016, 45 (2), 420-431.
(136) He, P. J.; Zhou, Y. Z.; Shao, L. M.; Huang, J. H.; Yang, Z.; Lu, F. The discrepant mobility of antibiotic resistant genes: Evidence from their spatial distribution in sewage sludge flocs. Sci. Total Environ. 2019, 697, 8, Article. DOI: 10.1016/j.scitotenv.2019.134176.
(137) Lin, Z. B.; Yuan, T.; Zhou, L.; Cheng, S.; Qu, X.; Lu, P.; Feng, Q. Y. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environ. Geochem. Health 2021, 43 (5), 1741-1758, Review. DOI: 10.1007/s10653-020-00759-0.
(138) Huang, X.; Zheng, J.; Tian, S.; Liu, C.; Liu, L.; Wei, L.; Fan, H.; Zhang, T.; Wang, L.; Zhu, G. Higher temperatures do not always achieve better antibiotic resistance gene removal in anaerobic digestion of swine manure. Applied and environmental microbiology 2019, 85 (7), e02878-02818.
(139) Wolters, B.; Ding, G.-C.; Kreuzig, R.; Smalla, K. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 2016, 92 (2), fiv163.
(140) Yang, F.; Han, B.; Gu, Y.; Zhang, K. Swine liquid manure: a hotspot of mobile genetic elements and antibiotic resistance genes. Sci Rep 2020, 10 (1), 15037.
(141) Zhang, R.; Gu, J.; Wang, X.; Qian, X.; Duan, M.; Sun, W.; Zhang, Y.; Li, H.; Li, Y. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure. Bioresour. Technol. 2017, 225, 343-348.
(142) Li, M. M.; Ray, P.; Knowlton, K. F.; Pruden, A.; Xia, K.; Teets, C.; Du, P. Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Sci. Total Environ. 2020, 710, 136310.
(143) Zhang, Q.; Xu, J.; Wang, X.; Zhu, W.; Pang, X.; Zhao, J. Changes and distributions of antibiotic resistance genes in liquid and solid fractions in mesophilic and thermophilic anaerobic digestion of dairy manure. Bioresour. Technol. 2021, 320, 124372.
(144) Resende, J. A.; Diniz, C.; Silva, V.; Otenio, M.; Bonnafous, A.; Arcuri, P.; Godon, J. J. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion. Journal of applied microbiology 2014, 117 (6), 1689-1699.
(145) Flores-Orozco, D.; Patidar, R.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. Metagenomic analyses reveal that mesophilic anaerobic digestion substantially reduces the abundance of antibiotic resistance genes and mobile genetic elements in dairy manures. Environ. Technol. Innov. 2023, 30, 103128.
(146) Flores-Orozco, D.; Patidar, R.; Levin, D. B.; Sparling, R.; Kumar, A.; Çiçek, N. Effect of mesophilic anaerobic digestion on the resistome profile of dairy manure. Bioresour. Technol. 2020, 315, 123889.
(147) Gillings, M. R. Integrons: past, present, and future. Microbiol. Mol. Biol. Rev. 2014, 78 (2), 257-277. |