參考文獻 |
Adamantiades, A., & Kessides, I. (2009). Nuclear power for sustainable development: Current status and future prospects. Energy Policy, 37(12), 5149-5166. https://doi.org/https://doi.org/10.1016/j.enpol.2009.07.052
Al Mashrafi, S., Diaz-Elsayed, N., Benjamin, J., Arias, M. E., & Zhang, Q. (2022). An environmental and economic sustainability assessment of a pressure retarded osmosis system. Desalination, 537, 115869. https://doi.org/https://doi.org/10.1016/j.desal.2022.115869
Avci, A. H., Sarkar, P., Tufa, R. A., Messana, D., Argurio, P., Fontananova, E., Di Profio, G., & Curcio, E. (2016). Effect of Mg2+ ions on energy generation by Reverse Electrodialysis. Journal of Membrane Science, 520, 499-506. https://doi.org/https://doi.org/10.1016/j.memsci.2016.08.007
Bayazıt, Y. (2021). The effect of hydroelectric power plants on the carbon emission: An example of Gokcekaya dam, Turkey. Renewable Energy, 170, 181-187. https://doi.org/https://doi.org/10.1016/j.renene.2021.01.130
Brandon, N. P., Skinner, S., & Steele, B. C. H. (2003). Recent Advances in Materials for Fuel Cells. Annual Review of Materials Research, 33(1), 183-213. https://doi.org/10.1146/annurev.matsci.33.022802.094122
Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., & Tina, G. M. (2019). Integration of PV floating with hydroelectric power plants. Heliyon, 5(6), e01918. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01918
Çetin, G., Özkaraca, O., & Keçebaş, A. (2021). Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant. Renewable and Sustainable Energy Reviews, 137, 110623. https://doi.org/https://doi.org/10.1016/j.rser.2020.110623
Chae, S. H., Kim, Y. M., Park, H., Seo, J., Lim, S. J., & Kim, J. H. (2019). Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes. Energies, 12(2).
Chen, X., Jiang, C., Zhang, Y., Wang, Y., & Xu, T. (2017). Storable hydrogen production by Reverse Electro-Electrodialysis (REED). Journal of Membrane Science, 544, 397-405. https://doi.org/https://doi.org/10.1016/j.memsci.2017.09.006
Cho, D. H., Lee, K. H., Kim, Y. M., Park, S. H., Lee, W. H., Lee, S. M., & Lee, Y. M. (2017). Effect of cationic groups in poly(arylene ether sulfone) membranes on reverse electrodialysis performance. Chem Commun (Camb), 53(15), 2323-2326. https://doi.org/10.1039/c6cc08440k
Choi, J., Oh, Y., Chae, S., & Hong, S. (2019). Membrane capacitive deionization-reverse electrodialysis hybrid system for improving energy efficiency of reverse osmosis seawater desalination. Desalination, 462, 19-28. https://doi.org/https://doi.org/10.1016/j.desal.2019.04.003
Daniilidis, A., Herber, R., & Vermaas, D. A. (2014). Upscale potential and financial feasibility of a reverse electrodialysis power plant. Applied Energy, 119, 257-265. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.12.066
Długołęcki, P., Ogonowski, P., Metz, S. J., Saakes, M., Nijmeijer, K., & Wessling, M. (2010). On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1), 369-379. https://doi.org/https://doi.org/10.1016/j.memsci.2009.11.069
Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4), 2154-2171. https://doi.org/https://doi.org/10.1016/j.rser.2012.01.029
Ferguson, M. A., & Branscombe, N. R. (2010). Collective guilt mediates the effect of beliefs about global warming on willingness to engage in mitigation behavior. Journal of Environmental Psychology, 30(2), 135-142.
Güler, E., Elizen, R., Vermaas, D. A., Saakes, M., & Nijmeijer, K. (2013). Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 446, 266-276. https://doi.org/https://doi.org/10.1016/j.memsci.2013.06.045
Gao, X., & Kroeze, C. (2012). The effects of blue energy on future emissions of greenhouse gases and other atmospheric pollutants in China. Journal of Integrative Environmental Sciences, 9(sup1), 177-190.
Geise, G. M., Cassady, H. J., Paul, D. R., Logan, B. E., & Hickner, M. A. (2014). Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys Chem Chem Phys, 16(39), 21673-21681. https://doi.org/10.1039/c4cp03076a
Guler, E., Zhang, Y.-l., Saakes, M., & Nijmeijer, K. (2012). Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem, 5 11, 2262-2270.
Guo, X., Lin, K., Huang, H., & Li, Y. (2019). Carbon footprint of the photovoltaic power supply chain in China. Journal of Cleaner Production, 233, 626-633. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.102
Han, J.-H., Jeong, H., Hwang, K. S., Kim, C.-S., Jeong, N., & Yang, S. (2020). Asymmetrical electrode system for stable operation of a large-scale reverse electrodialysis (RED) system. Environmental Science: Water Research & Technology, 6(6), 1597-1605. https://doi.org/10.1039/d0ew00001a
Hatzell, M. C., Zhu, X., & Logan, B. E. (2014). Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System. ACS sustainable chemistry & engineering, 2(9), 2211-2216. https://doi.org/10.1021/sc5004133
Helfer, F., Lemckert, C., & Anissimov, Y. G. (2014). Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review. Journal of Membrane Science, 453, 337-358. https://doi.org/https://doi.org/10.1016/j.memsci.2013.10.053
Herman, H., Slade, R. C. T., & Varcoe, J. R. (2003). The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation. Journal of Membrane Science, 218(1), 147-163. https://doi.org/https://doi.org/10.1016/S0376-7388(03)00167-4
Hibbs, M. R., Fujimoto, C. H., & Cornelius, C. J. (2009). Synthesis and characterization of poly (phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 42(21), 8316-8321.
Hidayat, S., Song, Y. H., & Park, J. Y. (2017). Performance of a continuous flow microbial reverse-electrodialysis electrolysis cell using a non-buffered substrate and catholyte effluent addition. Bioresour Technol, 240, 77-83. https://doi.org/10.1016/j.biortech.2017.03.004
Hong, J. G., & Chen, Y. (2014). Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation. Journal of Membrane Science, 460, 139-147. https://doi.org/https://doi.org/10.1016/j.memsci.2014.02.027
Jang, J., Kang, Y., Han, J.-H., Jang, K., Kim, C.-M., & Kim, I. S. (2020). Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 491, 114540. https://doi.org/https://doi.org/10.1016/j.desal.2020.114540
Kang, B., Kim, H. J., & Kim, D.-K. (2018). Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis. Journal of Membrane Science, 550, 286-295. https://doi.org/https://doi.org/10.1016/j.memsci.2018.01.006
Kim, J.-H., Lee, J.-H., Maurya, S., Shin, S.-H., Lee, J.-Y., Chang, I. S., & Moon, S.-H. (2016). Proof-of-concept experiments of an acid-base junction flow battery by reverse bipolar electrodialysis for an energy conversion system. Electrochemistry Communications, 72, 157-161. https://doi.org/https://doi.org/10.1016/j.elecom.2016.09.025
Kim, Y., & Logan, B. E. (2011). Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production. Environmental Science & Technology, 45(13), 5834-5839. https://doi.org/10.1021/es200979b
Li, J., Li, S., & Wu, F. (2020). Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renewable Energy, 155, 456-468. https://doi.org/https://doi.org/10.1016/j.renene.2020.03.133
Li, W., Krantz, W. B., Cornelissen, E. R., Post, J. W., Verliefde, A. R. D., & Tang, C. Y. (2013). A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 104, 592-602. https://doi.org/https://doi.org/10.1016/j.apenergy.2012.11.064
Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488(7411), 313-319. https://doi.org/10.1038/nature11477
Luo, X., Nam, J. Y., Zhang, F., Zhang, X., Liang, P., Huang, X., & Logan, B. E. (2013). Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresour Technol, 140, 399-405. https://doi.org/10.1016/j.biortech.2013.04.097
Lyman, J., & Fleming, R. H. (1940). Composition of sea water. J. mar. Res, 3(2), 134-146.
Mei, Y., & Tang, C. Y. (2017). Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications. Journal of Membrane Science, 539, 305-312. https://doi.org/https://doi.org/10.1016/j.memsci.2017.06.014
Miró, L., Brückner, S., & Cabeza, L. F. (2015). Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renewable and Sustainable Energy Reviews, 51, 847-855. https://doi.org/https://doi.org/10.1016/j.rser.2015.06.035
Mora, D. A. a., & de Rijck, A. (2015). Blue energy: salinity gradient power in practice. Global Sustainable Development Report; United Nations: New York, NY, USA.
Moreno, J., de Hart, N., Saakes, M., & Nijmeijer, K. (2017). CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis. Water Research, 125, 23-31. https://doi.org/https://doi.org/10.1016/j.watres.2017.08.015
Moya, A. A. (2020). Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A Nernst-Planck based study. Journal of Membrane Science, 598, 117784. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117784
Mueller, K. E., Thomas, J. T., Johnson, J. X., DeCarolis, J. F., & Call, D. F. (2021). Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis. Journal of Industrial Ecology, 25(5), 1194-1206.
Nam, J.-Y., Hwang, K.-S., Kim, H.-C., Jeong, H., Kim, H., Jwa, E., Yang, S., Choi, J., Kim, C.-S., Han, J.-H., & Jeong, N. (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148, 261-271. https://doi.org/https://doi.org/10.1016/j.watres.2018.10.054
Neumann, F. (2014). Personal Communication about different types of present SGP pilots/research globally by David Acuña Mora and Arvid de Rijck. In. Wageningen.
O′Sullivan, M., Gravatt, M., Popineau, J., O′Sullivan, J., Mannington, W., & McDowell, J. (2021). Carbon dioxide emissions from geothermal power plants. Renewable Energy, 175, 990-1000. https://doi.org/https://doi.org/10.1016/j.renene.2021.05.021
Post, J. W. (2014). Personal Communication about the RED type of Blue Energy and its other possible applications by David Acuña Mora and Arvid de Rijck. In. Amersfoort.
Post, J. W., Hamelers, H. V. M., & Buisman, C. J. N. (2008). Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System. Environmental Science & Technology, 42(15), 5785-5790. https://doi.org/10.1021/es8004317
Post, J. W., Hamelers, H. V. M., & Buisman, C. J. N. (2009). Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. Journal of Membrane Science, 330(1), 65-72. https://doi.org/https://doi.org/10.1016/j.memsci.2008.12.042
Raka, Y. D., Karoliussen, H., Lien, K. M., & Burheim, O. S. (2020). Opportunities and challenges for thermally driven hydrogen production using reverse electrodialysis system. International Journal of Hydrogen Energy, 45(2), 1212-1225. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.05.126
Saito, K., Saito, K., Sugita, K., Tamada, M., & Sugo, T. (2002). Convection-aided collection of metal ions using chelating porous flat-sheet membranes. J Chromatogr A, 954(1-2), 277-283. https://doi.org/10.1016/s0021-9673(02)00163-2
Santoro, S., Tufa, R. A., Avci, A. H., Fontananova, E., Di Profio, G., & Curcio, E. (2021). Fouling propensity in reverse electrodialysis operated with hypersaline brine. Energy, 228, 120563. https://doi.org/https://doi.org/10.1016/j.energy.2021.120563
Sata, T. (2007). Ion exchange membranes: preparation, characterization, modification and application. Royal Society of chemistry.
Scialdone, O., Albanese, A., D’Angelo, A., Galia, A., & Guarisco, C. (2013). Investigation of electrode material – redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs. Journal of Electroanalytical Chemistry, 704, 1-9. https://doi.org/https://doi.org/10.1016/j.jelechem.2013.06.001
Scialdone, O., Guarisco, C., Grispo, S., Angelo, A. D., & Galia, A. (2012). Investigation of electrode material – Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples. Journal of Electroanalytical Chemistry, 681, 66-75. https://doi.org/https://doi.org/10.1016/j.jelechem.2012.05.017
Sharma, H., & Singh, J. (2013). Run off river plant: status and prospects. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 3(2), 2278-3075.
Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281-302.
Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192-203. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.053
Simões, C., Pintossi, D., Saakes, M., & Brilman, W. (2021). Optimizing multistage reverse electrodialysis for enhanced energy recovery from river water and seawater: Experimental and modeling investigation. Advances in Applied Energy, 2, 100023. https://doi.org/https://doi.org/10.1016/j.adapen.2021.100023
Simões, C., Pintossi, D., Saakes, M., Borneman, Z., Brilman, W., & Nijmeijer, K. (2020). Electrode segmentation in reverse electrodialysis: Improved power and energy efficiency. Desalination, 492, 114604. https://doi.org/https://doi.org/10.1016/j.desal.2020.114604
Sims, R. E. H., Rogner, H.-H., & Gregory, K. (2003). Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy, 31(13), 1315-1326. https://doi.org/https://doi.org/10.1016/S0301-4215(02)00192-1
Singh, V. K., & Singal, S. K. (2017). Operation of hydro power plants-a review. Renewable and Sustainable Energy Reviews, 69, 610-619. https://doi.org/https://doi.org/10.1016/j.rser.2016.11.169
Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459-497. https://doi.org/https://doi.org/10.1016/j.enconman.2017.11.019
Song, Y.-H., Hidayat, S., Effendi, A. J., & Park, J.-Y. (2021). Simultaneous hydrogen production and struvite recovery within a microbial reverse-electrodialysis electrolysis cell. Journal of Industrial and Engineering Chemistry, 94, 302-308. https://doi.org/https://doi.org/10.1016/j.jiec.2020.10.043
Tedesco, M., Cipollina, A., Tamburini, A., Bogle, I. D. L., & Micale, G. (2015). A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chemical Engineering Research and Design, 93, 441-456. https://doi.org/https://doi.org/10.1016/j.cherd.2014.05.009
Tedesco, M., Cipollina, A., Tamburini, A., & Micale, G. (2017). Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. Journal of Membrane Science, 522, 226-236. https://doi.org/https://doi.org/10.1016/j.memsci.2016.09.015
Tedesco, M., Scalici, C., Vaccari, D., Cipollina, A., Tamburini, A., & Micale, G. (2016). Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. Journal of Membrane Science, 500, 33-45. https://doi.org/https://doi.org/10.1016/j.memsci.2015.10.057
Tristán, C., Rumayor, M., Dominguez-Ramos, A., Fallanza, M., Ibáñez, R., & Ortiz, I. (2020). Life cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plant. Sustainable Energy & Fuels, 4(8), 4273-4284.
Tufa, R. A., Rugiero, E., Chanda, D., Hnàt, J., van Baak, W., Veerman, J., Fontananova, E., Di Profio, G., Drioli, E., Bouzek, K., & Curcio, E. (2016). Salinity gradient power-reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production. Journal of Membrane Science, 514, 155-164. https://doi.org/https://doi.org/10.1016/j.memsci.2016.04.067
Vargas, S. A., Esteves, G. R. T., Maçaira, P. M., Bastos, B. Q., Cyrino Oliveira, F. L., & Souza, R. C. (2019). Wind power generation: A review and a research agenda. Journal of Cleaner Production, 218, 850-870. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.02.015
Vaselbehagh, M., Karkhanechi, H., Takagi, R., & Matsuyama, H. (2017). Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process. Journal of Membrane Science, 530, 232-239. https://doi.org/https://doi.org/10.1016/j.memsci.2017.02.036
Veerman, J., Saakes, M., Metz, S. J., & Harmsen, G. J. (2010). Reverse electrodialysis: evaluation of suitable electrode systems. Journal of Applied Electrochemistry, 40(8), 1461-1474. https://doi.org/10.1007/s10800-010-0124-8
Vermaas, D. A. (2014). Energy generation from mixing salt water and fresh water: smart flow strategies for reverse electrodialysis.
Vermaas, D. A., Saakes, M., & Nijmeijer, K. (2011). Doubled power density from salinity gradients at reduced intermembrane distance. Environ Sci Technol, 45(16), 7089-7095. https://doi.org/10.1021/es2012758
Vermaas, D. A., Veerman, J., Yip, N. Y., Elimelech, M., Saakes, M., & Nijmeijer, K. (2013). High efficiency in energy generation from salinity gradients with reverse electrodialysis. ACS sustainable chemistry & engineering, 1(10), 1295-1302.
Vinodh, R., Ilakkiya, A., Elamathi, S., & Sangeetha, D. (2010). A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization. Materials Science and Engineering: B, 167(1), 43-50. https://doi.org/https://doi.org/10.1016/j.mseb.2010.01.025
Wiedmann, T., & Minx, J. (2008). A definition of ‘carbon footprint’. Ecological economics research trends, 1(2008), 1-11.
Xu, T. (2005). Ion exchange membranes: State of their development and perspective. Journal of Membrane Science, 263(1), 1-29. https://doi.org/https://doi.org/10.1016/j.memsci.2005.05.002
Xu, T., Yang, W. h., & He, B. (2002). Effect of solvent composition on the sulfonation degree of poly(phenylene oxide) (PPO). Chinese Journal of Polymer Science, 20, 53-57.
Yang, K., Li, X., Guo, J., Zheng, J., Li, S., Zhang, S., Cao, X., Sherazi, T. A., & Liu, X. (2020). Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups. Journal of Membrane Science, 596, 117720. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117720
Yip, N. Y., & Elimelech, M. (2012). Thermodynamic and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis. Environmental Science & Technology, 46(9), 5230-5239. https://doi.org/10.1021/es300060m
Yip, N. Y., Vermaas, D. A., Nijmeijer, K., & Elimelech, M. (2014). Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ Sci Technol, 48(9), 4925-4936. https://doi.org/10.1021/es5005413
Zhang, Y., Wu, X., Xu, S., Leng, Q., & Wang, S. (2022). A serial system of multi-stage reverse electrodialysis stacks for hydrogen production. Energy Conversion and Management, 251, 114932. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114932
Zhou, Y., Zhao, K., Hu, C., Liu, H., Wang, Y., & Qu, J. (2018). Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. Electrochimica Acta, 269, 128-135. https://doi.org/https://doi.org/10.1016/j.electacta.2018.02.136
Zhu, X., He, W., & Logan, B. E. (2015). Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science, 486, 215-221. https://doi.org/https://doi.org/10.1016/j.memsci.2015.03.035
Zhu, X., Kim, T., Rahimi, M., Gorski, C. A., & Logan, B. E. (2017). Integrating Reverse‐Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage. ChemSusChem, 10(4), 797-803.
|