參考文獻 |
1. Karwehl, S., & Stadler, M. (2016). Exploitation of fungal biodiversity for discovery of novel antibiotics. How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives, 303-338.
2. Aminov, R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology, 1, 134.
3. Stadler, M., & Dersch, P. (Eds.). (2016). How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives (Vol. 398). Springer.
4. Harbarth, S., Theuretzbacher, U., Hackett, J., & DRIVE-AB consortium. (2015). Antibiotic research and development: business as usual? The Journal of Antimicrobial Chemotherapy, 70(6), 1604–1607.
5. Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750.
6. Blaskovich M. A. T. (2018). The Fight Against Antimicrobial Resistance Is Confounded by a Global Increase in Antibiotic Usage. ACS Infectious Diseases, 4(6), 868–870. https://doi.org/10.1021/acsinfecdis.8b00109
7. Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L.daS., Silva-Pereira, I., & Kyaw, C. M. (2013). Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology, 4, 353. https://doi.org/10.3389/fmicb.2013.00353
8. Walsh, C., & Wencewicz, T. (2016). Antibiotics: Challenges, Mechanisms, Opportunities. John Wiley & Sons.
9. Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435.
10. Schillaci, D., Spanò, V., Parrino, B., Carbone, A., Montalbano, A., Barraja, P., Diana, P., Cirrincione, G., & Cascioferro, S. (2017). Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. Journal of Medicinal Chemistry, 60(20), 8268–8297. https://doi.org/10.1021/acs.jmedchem.7b00215
11. Aminov, R. I., & Mackie, R. I. (2007). Evolution and ecology of antibiotic resistance genes. FEMS Microbiology Letters, 271(2), 147–161. https://doi.org/10.1111/j.1574-6968.2007.00757.x
12. Peterson, E., & Kaur, P. (2018). Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology, 9, 2928.
13. Cantón R. (2009). Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clinical Microbiology and Infection, 15, 20–25.
14. Martínez J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887), 365–367.
15. Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 44(7), 1771–1777. https://doi.org/10.1128/AAC.44.7.1771-1777.2000
16. Davies J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science, 264(5157), 375–382.
17. Liu, S. S., Qu, H. M., Yang, D., Hu, H., Liu, W. L., Qiu, Z. G., Hou, A. M., Guo, J., Li, J. W., Shen, Z. Q., & Jin, M. (2018). Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research, 136, 131–136. https://doi.org/10.1016/j.watres.2018.02.036
18. Khan, S. N., & Khan, A. U. (2016). Breaking the Spell: Combating Multidrug Resistant ′Superbugs′. Frontiers in Microbiology, 7, 174. https://doi.org/10.3389/fmicb.2016.00174
19. Viana, A. T., Caetano, T., Covas, C., Santos, T., & Mendo, S. (2018). Environmental superbugs: The case study of Pedobacter spp. Environmental Pollution, 241, 1048–1055.
20. Organization, W. H. (2014). Antimicrobial resistance: global report on surveillance 2014. World Health Organization.
21. Schnoor J. L. (2014). Re-emergence of emerging contaminants. Environmental Science & Technology, 48(19), 11019–11020. https://doi.org/10.1021/es504256j
22. Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology, 40(23), 7445–7450. https://doi.org/10.1021/es060413l
23. Ghimpețeanu, O. M., Pogurschi, E. N., Popa, D. C., Dragomir, N., Drăgotoiu, T., Mihai, O. D., & Petcu, C. D. (2022). Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods, 11(10), 1430.
24. Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459), eaaw1944.
25. Aarestrup F. (2012). Sustainable farming: Get pigs off antibiotics. Nature, 486(7404), 465–466. https://doi.org/10.1038/486465a
26. Aarestrup F. M. (2000). Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS. Supplementum, 101, 1–48.
27. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026
28. Allen H. K. (2014). Antibiotic resistance gene discovery in food-producing animals. Current Opinion in Microbiology, 19, 25–29. https://doi.org/10.1016/j.mib.2014.06.001
29. Aarestrup F. M. (2005). Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic & Clinical Pharmacology & Toxicology, 96(4), 271–281. https://doi.org/10.1111/j.1742-7843.2005.pto960401.x
30. Liu, C., Feng, C., Duan, Y., Wang, P., Peng, C., Li, Z., Yu, L., Liu, M., & Wang, F. (2023). Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong Province, China. Environmental Pollution, 319, 120998.
31. Dweba, C. C., Zishiri, O. T., & El Zowalaty, M. E. (2018). Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infection and Drug Resistance, 11, 2497–2509. https://doi.org/10.2147/IDR.S175967
32. Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal Resistance and Its Association With Antibiotic Resistance. Advances in Microbial Physiology, 70, 261–313. https://doi.org/10.1016/bs.ampbs.2017.02.001
33. Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399. https://doi.org/10.3389/fmicb.2012.00399
34. Williams-Nguyen, J., Sallach, J. B., Bartelt-Hunt, S., Boxall, A. B., Durso, L. M., McLain, J. E., Singer, R. S., Snow, D. D., & Zilles, J. L. (2016). Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. Journal of Environmental Quality, 45(2), 394–406. https://doi.org/10.2134/jeq2015.07.0336
35. Franklin, A. M., Aga, D. S., Cytryn, E., Durso, L. M., McLain, J. E., Pruden, A., Roberts, M. C., Rothrock, M. J., Snow, D. D., Watson, J. E., & Dungan, R. S. (2016). Antibiotics in Agroecosystems: Introduction to the Special Section. Journal of Environmental Quality, 45(2), 377–393. https://doi.org/10.2134/jeq2016.01.0023
36. Nesme, J., & Simonet, P. (2015). The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology, 17(4), 913–930. https://doi.org/10.1111/1462-2920.12631
37. Shin, H., Kim, Y., Han, S., & Hur, H. G. (2023). Resistome Study in Aquatic Environments. Journal of Microbiology and Biotechnology, 33(3), 277–287. https://doi.org/10.4014/jmb.2210.10044
38. Boehme, S., Werner, G., Klare, I., Reissbrodt, R., & Witte, W. (2004). Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Molecular Nutrition & Food Research, 48(7), 522–531. https://doi.org/10.1002/mnfr.200400030
39. Rodríguez, C., Lang, L., Wang, A., Altendorf, K., García, F., & Lipski, A. (2006). Lettuce for human consumption collected in Costa Rica contains complex communities of culturable oxytetracycline- and gentamicin-resistant bacteria. Applied and Environmental Microbiology, 72(9), 5870–5876. https://doi.org/10.1128/AEM.00963-06
40. 葉昇炎、鄭閔謙、程梅萍(2016)。畜牧糞尿水資源化再利用之發展沿革。農業生技產業季刊,(46),29-32。
41. 郭楊正、廖麗玲 (2022)。沼液沼渣回收再利用方法評估。行政院原子能委員會核能研究所
42. Youngquist, C. P., Mitchell, S. M., & Cogger, C. G. (2016). Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. Journal of Environmental Quality, 45(2), 537–545. https://doi.org/10.2134/jeq2015.05.0256
43. Sun, W., Qian, X., Gu, J., Wang, X. J., & Duan, M. L. (2016). Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Scientific Reports, 6, 30237. https://doi.org/10.1038/srep30237
44. Gou, M., Hu, H. W., Zhang, Y. J., Wang, J. T., Hayden, H., Tang, Y. Q., & He, J. Z. (2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. The Science of the Total Environment, 612, 1300–1310.
45. 林子晞 (2022)。沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討。國立中央大學環工所碩士論文,桃園縣。https://hdl.handle.net/11296/35jd58
46. Séveno, N. A., Kallifidas, D., Smalla, K., van Elsas, J. D., Collard, J. M., Karagouni, A. D., & Wellington, E. M. (2002). Occurrence and reservoirs of antibiotic resistance genes in the environment. Reviews and Research in Medical Microbiology, 13(1), 15-27.
47. Chen, P., Guo, X., Li, S., & Li, F. (2021). A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. Environment International, 156, 106689. https://doi.org/10.1016/j.envint.2021.106689
48. Hu, Y., Zhang, T., Jiang, L., Luo, Y., Yao, S., Zhang, D., Lin, K., & Cui, C. (2019). Occurrence and reduction of antibiotic resistance genes in conventional and advanced drinking water treatment processes. The Science of the Total Environment, 669, 777–784. https://doi.org/10.1016/j.scitotenv.2019.03.143
49. Zhang, J., Sui, Q., Tong, J., Buhe, C., Wang, R., Chen, M., & Wei, Y. (2016). Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements. Water Research, 106, 62–70. https://doi.org/10.1016/j.watres.2016.09.055
50. Zheng, H., Wang, R., Zhang, Q., Zhao, J., Li, F., Luo, X., & Xing, B. (2020). Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. Environment International, 145, 106158. https://doi.org/10.1016/j.envint.2020.106158
51. Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. The Science of the Total Environment, 447, 345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032
52. Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Vaz-Moreira, I., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044
53. Nielsen, P. H., & McMahon, K. D. (2014). Microbiology and microbial ecology of the activated sludge process. Activated sludge–100 years and counting, 53-76.
54. Korzeniewska, E., & Harnisz, M. (2018). Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. The Science of the Total Environment, 639, 304–315. https://doi.org/10.1016/j.scitotenv.2018.05.165
55. Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. The Science of the Total Environment, 512-513, 125–132.
56. Auerbach, E. A., Seyfried, E. E., & McMahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41(5), 1143–1151. https://doi.org/10.1016/j.watres.2006.11.045
57. Huang, F., Hong, Y., Mo, C., Huang, P., Liao, X., & Yang, Y. (2022). Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects. Frontiers in Veterinary Science, 9, 1054316. https://doi.org/10.3389/fvets.2022.1054316
58. Uluseker, C., Kaster, K. M., Thorsen, K., Basiry, D., Shobana, S., Jain, M., Kumar, G., Kommedal, R., & Pala-Ozkok, I. (2021). A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Frontiers in Microbiology, 12, 717809.
59. Alexander, J., Knopp, G., Dötsch, A., Wieland, A., & Schwartz, T. (2016). Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. The Science of the Total Environment, 559, 103–112. https://doi.org/10.1016/j.scitotenv.2016.03.154
60. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A., & Olanczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater. Water science and technology : a journal of the International Association on Water Pollution Research, 64(12), 2352–2361. https://doi.org/10.2166/wst.2011.769
61. Zhou, Z., Shen, Z., Cheng, Z., Zhang, G., Li, M., Li, Y., ... & Crittenden, J. C. (2020). Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Science Bulletin, 65(24), 2107-2119.
62. Ren, S., Boo, C., Guo, N., Wang, S., Elimelech, M., & Wang, Y. (2018). Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environmental Science & Technology, 52(15), 8666-8673.
63. Giannakis, S., Le, T. M., Entenza, J. M., & Pulgarin, C. (2018). Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. Water Research, 143, 334–345. https://doi.org/10.1016/j.watres.2018.06.062
64. Zhang, T., Zhang, X. X., & Ye, L. (2011). Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PloS ONE, 6(10), e26041. https://doi.org/10.1371/journal.pone.0026041
65. Ezzariai, A., Hafidi, M., Khadra, A., Aemig, Q., El Fels, L., Barret, M., ... & Pinelli, E. (2018). Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. Journal of Hazardous Materials, 359, 465-481.
66. Pruden, A., Larsson, D. J., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D. W., ... & Zhu, Y. G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121(8), 878-885.
67. Xie, W. Y., Shen, Q., & Zhao, F. J. (2018). Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science, 69(1), 181-195.
68. Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450-1457.
69. Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659, 473-490.
70. Shao, B., Liu, Z., Tang, L., Liu, Y., Liang, Q., Wu, T., ... & Yu, J. (2022). The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A mini review. Journal of Hazardous Materials, 129067.
71. Wang, Y., Liu, Y., Zhan, W., Zheng, K., Wang, J., Zhang, C., & Chen, R. (2020). Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. The Science of the Total Environment, 729, 139060. https://doi.org/10.1016/j.scitotenv.2020.139060
72. Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308. https://doi.org/10.1016/j.biortech.2014.05.029
73. Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S. E., & Ok, Y. S. (2014). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. Journal of Environmental Management, 141, 95–103. https://doi.org/10.1016/j.jenvman.2014.02.030
74. Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
75. Duan, M., Li, H., Gu, J., Tuo, X., Sun, W., Qian, X., & Wang, X. (2017). Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution, 224, 787–795.
76. Zheng, H., Feng, N., Yang, T., Shi, M., Wang, X., Zhang, Q., Zhao, J., Li, F., Sun, K., & Xing, B. (2021). Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil. The Science of the Total Environment, 796, 148962.
77. Chen, Q. L., Fan, X. T., Zhu, D., An, X. L., Su, J. Q., & Cui, L. (2018). Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. Soil Biology and Biochemistry, 119, 74-82.
78. Jiao, W., Du, R., Ye, M., Sun, M., Feng, Y., Wan, J., Zhao, Y., Zhang, Z., Huang, D., Du, D., & Jiang, X. (2018). ′Agricultural Waste to Treasure′ - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environmental Pollution, 242, 2088–2095.
79. Fang, J., Jin, L., Meng, Q., Shan, S., Wang, D., & Lin, D. (2022). Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. Journal of Hazardous Materials, 423(Pt B), 127150. https://doi.org/10.1016/j.jhazmat.2021.127150
80. He, L. Y., He, L. K., Gao, F. Z., Wu, D. L., Zou, H. Y., Bai, H., ... & Ying, G. G. (2021). Dissipation of antibiotic resistance genes in manure-amended agricultural soil. Science of the Total Environment, 787, 147582.
81. Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science & Technology, 52(9), 5027–5047. https://doi.org/10.1021/acs.est.7b06487
82. Cui, E., Wu, Y., Zuo, Y., & Chen, H. (2016). Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresource Technology, 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030
83. Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093
84. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078
85. 行政院農業委員會 (2020)。農業廢棄物排放量統計。資料引自https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx
86. 倪禮豐 (2003)。水稻廢棄資材之利用。花蓮區農業專訊 43: 21-24
87. 薛佑光 (2019)。菇包栽培後介質之生物炭開發與產業加值研究。資料引自https://reurl.cc/n0zGVd
88. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247–1253. https://doi.org/10.1021/es9031419
89. Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S. E., & Ok, Y. S. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615–622. https://doi.org/10.1016/j.biortech.2013.06.033
90. Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Parikh, S. J., Mukome, F. N., ... & Ok, Y. S. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 47(23), 2275-2330.
91. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50-56.
92. Singh, B., Dolk, M. M., Shen, Q., & Camps-Arbestain, M. (2017). Biochar pH, electrical conductivity and liming potential. Biochar: A Guide to Analytical Methods, 23.
93. 鄧教毅 (2018)。重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響。國立中央大學環工所碩士論文,桃園縣。https://hdl.handle.net/11296/g4u76w
94. 張智聖 (2019)。抗生素抗性菌與抗性基因在污水處理程序中的動態變化。國立中央大學環工所碩士論文,桃園縣。https://hdl.handle.net/11296/w3wbw7
95. MacFarland, T. W., Yates, J. M., MacFarland, T. W., & Yates, J. M. (2016). Spearman’s rank-difference coefficient of correlation. Introduction to nonparametric statistics for the biological sciences using R, 249-297.
96. Wang, M., Sun, Y., Liu, P., Sun, J., Zhou, Q., Xiong, W., & Zeng, Z. (2017). Fate of antimicrobial resistance genes in response to application of poultry and swine manure in simulated manure-soil microcosms and manure-pond microcosms. Environmental Science and Pollution Research, 24, 20949-20958.
97. Fahrenfeld, N., Knowlton, K., Krometis, L. A., Hession, W. C., Xia, K., Lipscomb, E., ... & Pruden, A. (2014). Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environmental Science & Technology, 48(5), 2643-2650.
98. Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2014). Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environmental Science & Technology, 48(10), 5620-5627.
99. Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2017). Effect of different treatment technologies on the fate of antibiotic resistance genes and class 1 integrons when residual municipal wastewater solids are applied to soil. Environmental Science & Technology, 51(24), 14225-14232.
100. 李杰穎 (尚未發表)。季節效應對沼液沼渣中抗生素抗性基因豐度影響(題目暫定)。國立中央大學環工所碩士論文,桃園縣。
101. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports (Amsterdam, Netherlands), 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
102. Donohue, M. D., & Aranovich, G. L. (1998). Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, 76, 137-152.
103. Wang, W., Liu, P., Zhang, M., Hu, J., & Xing, F. (2012). The pore structure of phosphoaluminate cement. Open Journal of Composite Materials, 02(03), 104-112.
104. Fang, Q., Chen, B., Lin, Y., & Guan, Y. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environmental Science & Technology, 48(1), 279-288.
105. Sajjadi, B., Chen, W. Y., & Egiebor, N. O. (2019). A comprehensive review on physical activation of biochar for energy and environmental applications. Reviews in Chemical Engineering, 35(6), 735-776.
106. Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43-59.
107. Martínez, J. L., Baquero, F., & Andersson, D. I. (2011). Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Current Opinion in Pharmacology, 11(5), 439-445.
108. Sabbagh, P., Rajabnia, M., Maali, A., & Ferdosi-Shahandashti, E. (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Sciences, 24(2), 136–142. https://doi.org/10.22038/ijbms.2020.48905.11208
109. Lian, F., Yu, W., Zhou, Q., Gu, S., Wang, Z., & Xing, B. (2020). Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 54(14), 8821–8829. https://doi.org/10.1021/acs.est.0c02227
110. Zheng, D., Yin, G., Liu, M., Hou, L., Yang, Y., Van Boeckel, T. P., ... & Li, Y. (2022). Global biogeography and projection of soil antibiotic resistance genes. Science Advances, 8(46), eabq8015.
111. He, L. Y., He, L. K., Gao, F. Z., Wu, D. L., Zou, H. Y., Bai, H., ... & Ying, G. G. (2021). Dissipation of antibiotic resistance genes in manure-amended agricultural soil. Science of the Total Environment, 787, 147582.
112. Jiao, W., Du, R., Ye, M., Sun, M., Feng, Y., Wan, J., ... & Jiang, X. (2018). ‘Agricultural Waste to Treasure’–Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environmental Pollution, 242, 2088-2095.
113. Han, X. M., Hu, H. W., Chen, Q. L., Yang, L. Y., Li, H. L., Zhu, Y. G., ... & Ma, Y. B. (2018). Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology and Biochemistry, 126, 91-102.
114. Lin, S. Y., Hameed, A., Arun, A. B., Liu, Y. C., Hsu, Y. H., Lai, W. A., Rekha, P. D., & Young, C. C. (2013). Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 11), 4100–4107. https://doi.org/10.1099/ijs.0.048231-0
115. Yu, M., & Zhao, Y. (2019). Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. Journal of Global Antimicrobial Resistance, 19, 320-327.
116. Leffler, D. A., & Lamont, J. T. (2015). Clostridium difficile infection. New England Journal of Medicine, 372(16), 1539-1548.
117. Gerritsen, J. (2015). The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract (Doctoral dissertation, Wageningen University and Research).
118. Weelink, S. A., van Doesburg, W., Saia, F. T., Rijpstra, W. I., Röling, W. F., Smidt, H., & Stams, A. J. (2009). A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiology Ecology, 70(3), 575–585. https://doi.org/10.1111/j.1574-6941.2009.00778.x
119. Losey, N. A., Stevenson, B. S., Busse, H. J., Damsté, J. S. S., Rijpstra, W. I. C., Rudd, S., & Lawson, P. A. (2013). Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. International Journal of Systematic and Evolutionary microbiology, 63(Pt 11), 4149–4157. https://doi.org/10.1099/ijs.0.051425-0
120. Oshiki, M., Toyama, Y., Suenaga, T., Terada, A., Kasahara, Y., Yamaguchi, T., & Araki, N. (2022). N2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N2O Reduction in Agricultural Soils. Microbes and Environments, 37(2), ME21090. https://doi.org/10.1264/jsme2.ME21090
121. Avrahami, S., & Bohannan, B. J. (2007). Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Applied and Environmental Microbiology, 73(4), 1166–1173. https://doi.org/10.1128/AEM.01803-06
122. Hirayama, H., Takai, K., Inagaki, F., Nealson, K. H., & Horikoshi, K. (2005). Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. International Journal of Systematic and Evolutionary Microbiology, 55(Pt 1), 467–472. https://doi.org/10.1099/ijs.0.63389-0
123. Huber, K. J., Geppert, A. M., Wanner, G., Fösel, B. U., Wüst, P. K., & Overmann, J. (2016). The first representative of the globally widespread subdivision 6 Acidobacteria,Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. International Journal of Systematic and Evolutionary Microbiology, 66(8), 2971–2979. https://doi.org/10.1099/ijsem.0.001131
124. Moynihan, E. L., Richards, K. G., Ritz, K., Tyrrel, S. F., & Brennan, F. P. (2013). Impact of soil type, biology and temperature on the survival of non-toxigenic Escherichia coli O157. In Biology and Environment: Proceedings of the Royal Irish Academy (pp. 41-46). Royal Irish Academy.
125. Sun, L. N., Wang, D. S., Yang, E. D., Fang, L. C., Chen, Y. F., Tang, X. Y., & Hua, R. M. (2016). Cupriavidus nantongensis sp. nov., a novel chlorpyrifos-degrading bacterium isolated from sludge. International Journal of Systematic and Evolutionary Microbiology, 66(6), 2335–2341. https://doi.org/10.1099/ijsem.0.001034
126. 全國畜牧糞尿資源化網站 (2023,6月10日)。畜牧資源化推動成果。資料引自https://epafarm.epa.gov.tw/
127. 行政院環境保護署水質保護網 (2023,6月10日)。畜牧糞尿資源化。資料引自https://water.epa.gov.tw/Public/CHT/Issue/hus_resources.aspx
128. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., ... & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
129. Fu, Y., Wang, F., Sheng, H., Hu, F., Wang, Z., Xu, M., ... & Tiedje, J. M. (2021). Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. Journal of Hazardous Materials, 411, 125048.
130. Shao, B., Liu, Z., Tang, L., Liu, Y., Liang, Q., Wu, T., ... & Yu, J. (2022). The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A mini review. Journal of Hazardous Materials, 129067. |