參考文獻 |
Al-Degs, Y. S., Tutunju, M. F., & Shawabkeh, R. A. (2000). The Feasibility of Using Diatomite and Mn–Diatomite for Remediation of Pb2+, Cu2+, and Cd2+from Water. Separation Science and Technology, 35(14), 2299-2310. https://doi.org/10.1081/ss-100102103
Al-Ghouti, M. A., & Da′ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. J Environ Manage, 150, 103-110. https://doi.org/10.1016/j.jenvman.2014.10.032
Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J. L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354. https://doi.org/10.1016/j.microc.2017.11.009
Asaoka, S., Yamamoto, T., Kondo, S., & Hayakawa, S. (2009). Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresour Technol, 100(18), 4127-4132. https://doi.org/10.1016/j.biortech.2009.03.075
Benjamin, M. M. (2002). Water chemistry. McGraw-Hill series in water resources and environmental engineering.
Bi, D., Yuan, G., Wei, J., Xiao, L., & Feng, L. (2020). Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. Bull Environ Contam Toxicol, 105(2), 277-282. https://doi.org/10.1007/s00128-020-02906-w
Boulamanti, A., & Moya, J. A. (2016). Production costs of the non-ferrous metals in the EU and other countries: Copper and zinc. Resources Policy, 49, 112-118. https://doi.org/10.1016/j.resourpol.2016.04.011
Chaudhry, S. A., Khan, T. A., & Ali, I. (2016). Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egyptian Journal of Basic and Applied Sciences, 3(3), 287-300. https://doi.org/10.1016/j.ejbas.2016.06.002
Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 135545. https://doi.org/10.1016/j.chemosphere.2022.135545
Chen, Y., Xu, J., Lv, Z., Xie, R., Huang, L., & Jiang, J. (2018). Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. J Environ Manage, 217, 646-653. https://doi.org/10.1016/j.jenvman.2018.04.007
Chung, H.-K., Kim, W.-H., Park, J., Cho, J., Jeong, T.-Y., & Park, P.-K. (2015). Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry, 28, 241-246. https://doi.org/10.1016/j.jiec.2015.02.021
Cuppett, J. D., Duncan, S. E., & Dietrich, A. M. (2006). Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chem Senses, 31(7), 689-697. https://doi.org/10.1093/chemse/bjl010
Di Leo, P., Pizzigallo, M. D., Ancona, V., Di Benedetto, F., Mesto, E., Schingaro, E., & Ventruti, G. (2012). Mechanochemical transformation of an organic ligand on mineral surfaces: the efficiency of birnessite in catechol degradation. J Hazard Mater, 201-202, 148-154. https://doi.org/10.1016/j.jhazmat.2011.11.054
Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. J Hazard Mater, 159(2-3), 235-244. https://doi.org/10.1016/j.jhazmat.2008.02.035
Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. J Hazard Mater, 161(2-3), 677-685. https://doi.org/10.1016/j.jhazmat.2008.04.020
Eren, E., Gumus, H., & Sarihan, A. (2011). Synthesis, structural characterization and Pb(II) adsorption behavior of K- and H-birnessite samples. Desalination, 279(1-3), 75-85. https://doi.org/10.1016/j.desal.2011.05.058
Fernández-Sánchez, M. L. (2018). Optical Atomic Emission Spectrometry—Inductively Coupled Plasma. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. https://doi.org/10.1016/b978-0-12-409547-2.14542-1
Han, R., Zou, W., Zhang, Z., Shi, J., & Yang, J. (2006). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. J Hazard Mater, 137(1), 384-395. https://doi.org/10.1016/j.jhazmat.2006.02.021
Hawash, H. B. I., Chmielewska, E., Netriová, Z., Majzlan, J., Pálková, H., Hudec, P., & Sokolík, R. (2018). Innovative comparable study for application of iron oxyhydroxide and manganese dioxide modified clinoptilolite in removal of Zn(II) from aqueous medium. Journal of Environmental Chemical Engineering, 6(5), 6489-6503. https://doi.org/10.1016/j.jece.2018.09.024
He, L., Meng, J., Wang, Y., Tang, X., Liu, X., Tang, C., Ma, L. Q., & Xu, J. (2021). Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. Ecotoxicol Environ Saf, 209, 111840. https://doi.org/10.1016/j.ecoenv.2020.111840
Hossain, M. F., Islam, M. S., Kashem, M. A., Osman, K. T., & Zhou, Y. (2021). Lead immobilization in soil using new hydroxyapatite-like compounds derived from oyster shell and its uptake by plant. Chemosphere, 279, 130570. https://doi.org/10.1016/j.chemosphere.2021.130570
Hsu, T. C. (2009). Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. J Hazard Mater, 171(1-3), 995-1000. https://doi.org/10.1016/j.jhazmat.2009.06.105
Huang, T. H., Lai, Y. J., & Hseu, Z. Y. (2018). Efficacy of cheap amendments for stabilizing trace elements in contaminated paddy fields. Chemosphere, 198, 130-138. https://doi.org/10.1016/j.chemosphere.2018.01.109
IUPAC. (1972). Manual of Symbols and Terminology, Appendix2, Part1, Colloid and Surface Chemistry. Pure Appl.Chem, 31, 578.
Izydorczyk, G., Mikula, K., Skrzypczak, D., Moustakas, K., Witek-Krowiak, A., & Chojnacka, K. (2021). Potential environmental pollution from copper metallurgy and methods of management. Environ Res, 197, 111050. https://doi.org/10.1016/j.envres.2021.111050
Jia, H., Liu, J., Zhong, S., Zhang, F., Xu, Z., Gong, X., & Lu, C. (2015). Manganese oxide coated river sand for Mn(II) removal from groundwater. Journal of Chemical Technology & Biotechnology, 90(9), 1727-1734. https://doi.org/10.1002/jctb.4524
Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol, 169, 622-629. https://doi.org/10.1016/j.biortech.2014.06.103
Khanam, R., Kumar, A., Nayak, A. K., Shahid, M., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B. S., & Pathak, H. (2020). Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci Total Environ, 699, 134330. https://doi.org/10.1016/j.scitotenv.2019.134330
Kuo, W.-T., Wang, H.-Y., Shu, C.-Y., & Su, D.-S. (2013). Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 46, 128-133. https://doi.org/10.1016/j.conbuildmat.2013.04.020
Kuroda, T. (1941). A Catalogue of Molluscan Shells from Taiwan (Formosa): With Descriptions of New Species. Taihoku Imperial University. https://books.google.com.tw/books?id=e1_ZoQEACAAJ
Le, T., Yang, Y., Yu, L., Huang, Z. H., & Kang, F. (2016). In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance. Sci Rep, 6, 37368. https://doi.org/10.1038/srep37368
Lee, C.-I., Yang, W.-F., & Hsieh, C.-I. (2004). Removal of copper (II) by manganese-coated sand in a liquid fluidized-bed reactor. Journal of Hazardous Materials, 114(1-3), 45-51.
Lee, J.-I., Kang, J.-K., Oh, J.-S., Yoo, S.-C., Lee, C.-G., Jho, E. H., & Park, S.-J. (2021). New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth. Journal of Cleaner Production, 328. https://doi.org/10.1016/j.jclepro.2021.129536
Lenoble, V., Laclautre, C., Serpaud, B., Deluchat, V., & Bollinger, J. C. (2004). As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin. Sci Total Environ, 326(1-3), 197-207. https://doi.org/10.1016/j.scitotenv.2003.12.012
Lian, W., Li, H., Yang, J., Joseph, S., Bian, R., Liu, X., Zheng, J., Drosos, M., Zhang, X., Li, L., Shan, S., & Pan, G. (2021). Influence of pyrolysis temperature on the cadmium and lead removal behavior of biochar derived from oyster shell waste. Bioresource Technology Reports, 15. https://doi.org/10.1016/j.biteb.2021.100709
Lin, P. Y., Wu, H. M., Hsieh, S. L., Li, J. S., Dong, C., Chen, C. W., & Hsieh, S. (2020). Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere, 254, 126903. https://doi.org/10.1016/j.chemosphere.2020.126903
Liu, H.-Y., Wu, H.-S., & Chou, C.-P. (2020). Study on engineering and thermal properties of environment-friendly lightweight brick made from Kinmen oyster shells & sorghum waste. Construction and Building Materials, 246. https://doi.org/10.1016/j.conbuildmat.2020.118367
Liu, S., Xie, Z., Zhu, Y., Zhu, Y., Jiang, Y., Wang, Y., & Gao, H. (2021). Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil. Environmental Technology & Innovation, 22. https://doi.org/10.1016/j.eti.2021.101388
Liu, T., Lawluvy, Y., Shi, Y., Ighalo, J. O., He, Y., Zhang, Y., & Yap, P.-S. (2022). Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering, 10(1). https://doi.org/10.1016/j.jece.2021.106502
Maliyekkal, S. M., Philip, L., & Pradeep, T. (2009). As(III) removal from drinking water using manganese oxide-coated-alumina: Performance evaluation and mechanistic details of surface binding. Chemical Engineering Journal, 153(1-3), 101-107. https://doi.org/10.1016/j.cej.2009.06.026
Mofulatsi, M. W., Prabakaran, E., Velempini, T., Green, E., & Pillay, K. (2022). Preparation of manganese oxide coated coal fly ash adsorbent for the removal of lead and reuse for latent fingerprint detection. Microporous and Mesoporous Materials, 329. https://doi.org/10.1016/j.micromeso.2021.111480
Moon, D. H., Cheong, K. H., Khim, J., Wazne, M., Hyun, S., Park, J. H., Chang, Y. Y., & Ok, Y. S. (2013). Stabilization of Pb(2)(+) and Cu(2)(+) contaminated firing range soil using calcined oyster shells and waste cow bones. Chemosphere, 91(9), 1349-1354. https://doi.org/10.1016/j.chemosphere.2013.02.007
Moussout, H., Ahlafi, H., Aazza, M., & Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 4(2), 244-254. https://doi.org/10.1016/j.kijoms.2018.04.001
Muttakin, M., Mitra, S., Thu, K., Ito, K., & Saha, B. B. (2018). Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. International Journal of Heat and Mass Transfer, 122, 795-805. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.107
Ng, K. C., Burhan, M., Shahzad, M. W., & Ismail, A. B. (2017). A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. Sci Rep, 7(1), 10634. https://doi.org/10.1038/s41598-017-11156-6
Ourednicek, P., Hudcova, B., Trakal, L., Pohorely, M., & Komarek, M. (2019). Synthesis of modified amorphous manganese oxide using low-cost sugars and biochars: Material characterization and metal(loid) sorption properties. Sci Total Environ, 670, 1159-1169. https://doi.org/10.1016/j.scitotenv.2019.03.300
Pan, Y., Chen, J., Gao, K., Lu, G., Ye, H., Wen, Z., Yi, X., & Dang, Z. (2021). Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: A laboratory column study. Sci Total Environ, 792, 148523. https://doi.org/10.1016/j.scitotenv.2021.148523
Passe-Coutrin, N., Altenor, S., & Gaspard, S. (2009). Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J Colloid Interface Sci, 332(2), 515-519. https://doi.org/10.1016/j.jcis.2008.12.079
Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., Wu, B., & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. J Hazard Mater, 400, 123116. https://doi.org/10.1016/j.jhazmat.2020.123116
Rahman, Muttakin, Pal, Shafiullah, & Saha. (2019). A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies, 12(23). https://doi.org/10.3390/en12234565
Reimann, C. C., Patrice De. (1988). Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist.
Robin, V., Tertre, E., Beaufort, D., Regnault, O., Sardini, P., & Descostes, M. (2015). Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments. Applied Geochemistry, 59, 74-84. https://doi.org/10.1016/j.apgeochem.2015.03.016
Shaheen, S. M., Natasha, Mosa, A., El-Naggar, A., Faysal Hossain, M., Abdelrahman, H., Khan Niazi, N., Shahid, M., Zhang, T., Fai Tsang, Y., Trakal, L., Wang, S., & Rinklebe, J. (2022). Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresour Technol, 346, 126581. https://doi.org/10.1016/j.biortech.2021.126581
Shard, A. G. (2020). X-ray photoelectron spectroscopy. In Characterization of Nanoparticles (pp. 349-371). Elsevier.
Siddiqui, S. I., & Chaudhry, S. A. (2017). Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Safety and Environmental Protection, 111, 592-626. https://doi.org/10.1016/j.psep.2017.08.009
Sivaraman, S., Michael Anbuselvan, N., Venkatachalam, P., Ramiah Shanmugam, S., & Selvasembian, R. (2022). Waste tire particles as efficient materials towards hexavalent chromium removal: Characterisation, adsorption behaviour, equilibrium, and kinetic modelling. Chemosphere, 295, 133797. https://doi.org/10.1016/j.chemosphere.2022.133797
Sriphong, L., Rojanarata, T., Gasser, C., & Lendl, B. (2018). At-line analysis of pharmaceutical nanofiber-products using ATR-FTIR spectroscopy. TJPS, 42(2018).
Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F., & Singh, R. P. (2017). Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 5. https://doi.org/10.3389/fenvs.2017.00064
Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004
Taffarel, S. R., & Rubio, J. (2010). Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 23(14), 1131-1138. https://doi.org/10.1016/j.mineng.2010.07.007
Tan, G., Liu, Y., & Xiao, D. (2019). Preparation of manganese oxides coated porous carbon and its application for lead ion removal. Carbohydr Polym, 219, 306-315. https://doi.org/10.1016/j.carbpol.2019.04.058
Tan, G., Wu, Y., Liu, Y., & Xiao, D. (2018). Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent. Journal of the Taiwan Institute of Chemical Engineers, 84, 85-92. https://doi.org/10.1016/j.jtice.2017.12.031
Tan, W. T., Zhou, H., Tang, S. F., Zeng, P., Gu, J. F., & Liao, B. H. (2022). Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. Environ Pollut, 300, 118899. https://doi.org/10.1016/j.envpol.2022.118899
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environ Sci Pollut Res Int, 27(9), 9126-9134. https://doi.org/10.1007/s11356-019-07059-w
Teng, S.-X., Wang, S.-G., Gong, W.-X., Liu, X.-W., & Gao, B.-Y. (2009). Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism. Journal of Hazardous Materials, 168(2-3), 1004-1011.
Wan, S., Qu, N., He, F., Wang, M., Liu, G., & He, H. (2015). Tea waste-supported hydrated manganese dioxide (HMO) for enhanced removal of typical toxic metal ions from water. RSC Advances, 5(108), 88900-88907. https://doi.org/10.1039/c5ra16556c
Wang, M. C., Sheng, G. D., & Qiu, Y. P. (2014). A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. International Journal of Environmental Science and Technology, 12(5), 1719-1726. https://doi.org/10.1007/s13762-014-0538-7
Wei, Y.-L., Kuo, P.-J., Yin, Y.-Z., Huang, Y.-T., Chung, T.-H., & Xie, X.-Q. (2018). Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials. Construction and Building Materials, 172, 224-232. https://doi.org/10.1016/j.conbuildmat.2018.03.242
Wu, Q., Chen, J., Clark, M., & Yu, Y. (2014). Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 311, 264-272. https://doi.org/10.1016/j.apsusc.2014.05.054
Wu, S., Liang, L., Zhang, Q., Xiong, L., Shi, S., Chen, Z., Lu, Z., & Fan, L. (2022). The ion-imprinted oyster shell material for targeted removal of Cd(II) from aqueous solution. J Environ Manage, 302(Pt A), 114031. https://doi.org/10.1016/j.jenvman.2021.114031
Xia, C., Zhang, X., & Xia, L. (2021). Heavy metal ion adsorption by permeable oyster shell bricks. Construction and Building Materials, 275. https://doi.org/10.1016/j.conbuildmat.2020.122128
Yang, B., & Jang, J. G. (2020). Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator. Construction and Building Materials, 257. https://doi.org/10.1016/j.conbuildmat.2020.119552
Yen, H. Y., & Li, J. Y. (2015). Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J Environ Manage, 161, 344-349. https://doi.org/10.1016/j.jenvman.2015.07.024
Yoon, G.-L., Kim, B.-T., Kim, B.-O., & Han, S.-H. (2003). Chemical–mechanical characteristics of crushed oyster-shell. Waste Management, 23(9), 825-834. https://doi.org/10.1016/s0956-053x(02)00159-9
Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341-349. https://doi.org/10.1016/j.chemosphere.2016.10.069
Zhao, J., Liu, J., Li, N., Wang, W., Nan, J., Zhao, Z., & Cui, F. (2016). Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chemical Engineering Journal, 304, 737-746. https://doi.org/10.1016/j.cej.2016.07.003
Zhou, F., Ye, G., Gao, Y., Wang, H., Zhou, S., Liu, Y., & Yan, C. (2022). Cadmium adsorption by thermal-activated sepiolite: Application to in-situ remediation of artificially contaminated soil. J Hazard Mater, 423(Pt A), 127104. https://doi.org/10.1016/j.jhazmat.2021.127104
Zou, W., Han, R., Chen, Z., Jinghua, Z., & Shi, J. (2006). Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1-3), 238-246. https://doi.org/10.1016/j.colsurfa.2006.01.008
Zou, W., Zhang, J., Li, K., Han, P., & Han, R. (2009). Characterization of manganese oxide and the adsorption of copper (II) and lead (II) ions from aqueous solutions. Adsorption Science & Technology, 27(6), 549-565.
王卿昧,「奈米孔隙吸附劑吸附VOCs之吸附平衡研究」,碩士論文,中原大學,桃園市(2003)。
江毓庭,「廢棄牡蠣殼發泡隔熱磚性能驗證與評估之研究」,碩士論文,國立臺北科技大學,臺北市(2021)。
朱東川,「廢棄牡蠣殼粉取代水泥及細骨材對水泥砂漿性質之影響」,碩士論文,國立雲林科技大學,雲林市(2002)。
李哲榮,「牡蠣殼粉資源化做為水泥膠結材料之研究」,碩士論文,國立臺灣海洋大學,基隆市(2004)。
林聖賢,「以牡蠣殼粉結合二氧化鈦光觸媒降解PCBs之研究」,碩士論文,國立屏東科技大學,屏東縣(2010)。
林玲珠,「表面改質之多孔洞吸附介質對特定污染物吸附之研究」,碩士論文,國立中央大學,桃園市(2012)。
翁鈺婷,「牡蠣殼作為植物及聲音載體的材質應用」,碩士論文,南臺科技大學,台南市(2015)。
陳又瑄,「廢觸媒製備吸附劑捕獲 CO2及其吸附特性之探討」,碩士論文,國立雲林科技大學,雲林市(2014)。
陳昱舜,「以淨水廠碳酸鈣結晶安定受鎘污染土壤之研究」,碩士論文,國立屏東科技大學,屏東市(2009)。
陳淦政,「灰階改質牡蠣殼粉環保隔熱塗料之熱特性研究」,碩士論文,明志科技大學,新北市(2015)。
陳柏佑,「廢棄蚵殼配合礦物摻料對水泥砂漿工程性質之研究」,碩士論文,國立高雄應用科技大學,高雄市(2010)。
莊淳元,「運用沸石吸附半導體揮發性有機物丙酮、單甲基醚丙二醇及乙酸甲氧基異丙酯控制技術之評估研究」,碩士論文,國立雲林科技大學,雲林市(2003)。
莊緯鵬,「商用椰纖維活性碳顆粒對吸附染料能力之研究」,碩士論文,崑山科技大學,臺南市(2014)。
許育婷,「焚化底渣合成環保吸附材料及其應用效能與特性研究」,碩士論文,逢甲大學,台中市(2021)。
黃昭銘,「商用椰纖維活性碳顆粒對吸附染料能力之研究」,碩士論文,崑山科技大學,台南市(2014)。
游子儀,「牡蠣殼粉、覆鐵牡蠣殼粉及覆錳牡蠣殼粉作為介質進行過濾處理地下水中重金屬」,碩士論文,明志科技大學,新北市(2019)。
鄭燕聲,「沸石吸附劑之改質及對硫化氫氣體吸附性能之研究」,碩士論文,國立高雄應用科技大學,高雄市(2009)。
賴家煒,「牡蠣殼之再利用研究」,碩士論文,國立新竹教育大學,新竹市(2009)。
蕭坤煜,「牡蠣殼粉應用於密級配瀝青混凝土之可行性評估」,碩士論文,國立成功大學,台南市(2016)。
顏江河,「以植生復育法移除平地造林地土壤重金屬污染」,行政院農業委員會林務局委託研究計畫,國立中興大學,台中市(2010)。
謝亞儒,「吸附劑對硫化氫氣體吸附性能及動力學之研究」,碩士論文,國高雄應用科技大學,高雄市(2016)。
蘇德馨,「廢牡蠣殼應用於控制性低強度材料可行性之研究」,碩士論文,國立高雄應用科技大學,高雄市(2011)。
行政院環保局,土壤污染物管制標準,主管法規查詢系統,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0110005,2011。
行政院農業委員會漁業,漁業統計,漁業統計年報查詢,https://www.fa.gov.tw/cht/PublicationsFishYear/index.aspx。 |