博碩士論文 109326028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.133.133.189
姓名 范仲翔(Jhong-Siang Fan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 錳改質牡蠣殼固定土壤中鎘和銅之研究
(Manganese-Coated Oyster Shell for Immobilizing of Cadmium and Copper in the Soil)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數
★ 以反向電透析(RED)系統產電並去除氨氮★ 比較電動堆高機語音式、間歇式、寬頻式警報裝置對作業場所工作者之安全效用探討,以C 造紙廠為例
★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查
★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
★ 桃園市三合一生質能中心提升一般廢棄物清除處理效能之研究★ 耐熱型聚乳酸與非耐熱型聚乳酸塑膠回收再利用過程之特性研究
★ 台灣石門水庫之表層、中層水與下游飲用水廠中微型塑膠之時空分佈、組成與相關性★ 桌上型能量分散式X射線螢光光譜儀(ED XRF)分析製程廢液之銅、鎳濃度方法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 近年來,由於工業快速成長,發生工業廢水及廢料之濫排等事件,導致重金屬、有機物及酸鹼度等污染滲入土壤中。重金屬堆積於土壤後,再藉由河水和雨水持續灌溉,使土壤中重金屬隨著土壤孔隙水被農作物根部吸收進入農作物內部,累積於食物鏈或是向下滲透至地下水區域,擴大污染範圍。
本研究使用牡蠣殼作為土壤中重金屬之吸附劑。牡蠣殼為牡蠣養殖所產生之副產物,為台灣西部沿海地區常見的廢棄物,不僅影響海岸線生態、產生惡臭,還會滋生蚊蟲和造成公衛上等問題。本研究將牡蠣殼進行前處理及表面改質,先利用NaOH鹼洗牡蠣殼,再使用KMnO4進行表面改質。藉由土壤管柱實驗評估牡蠣殼、鹼洗牡蠣殼和錳改質牡蠣殼對鎘和銅去除的能力與時效性。另外,三種牡蠣殼施放於受污染土壤中進行土壤培育實驗,使土壤孔隙水中的重金屬離子與牡蠣殼進行接觸後,將其固定於牡蠣殼上,探討是否能有效降低重金屬的遷移率,減少向下滲透至地下水區域及被植物吸收的可能性。
由三種牡蠣殼對鎘和銅之等溫吸附實驗與吸附動力實驗結果顯示,三種牡蠣殼皆對重金屬銅之吸附行為符合Freundlich等溫吸附模式及擬二階吸附動力模式,其等溫吸附常數n值皆大於 1,屬於有利之吸附反應;三種牡蠣殼皆對重金屬鎘之吸附行為符合Langmuir等溫吸附模式及擬二階吸附動力模式。
土壤管柱實驗結果顯示,三種牡蠣殼對鎘或銅去除能力皆為錳改質牡蠣殼>鹼洗牡蠣殼>牡蠣殼。三種牡蠣殼對去除銅的時效性(去除率>95%)皆可長達180小時;固定鎘的時效性為:錳改質牡蠣殼(108小時) >鹼洗牡蠣殼(36小時) >牡蠣殼(24小時)。在土壤培育實驗中,經過15天實驗結果顯示,土壤孔隙水中銅、鎘的濃度皆有所下降,牡蠣殼對銅和鎘的最佳去除率分別為:銅81.04%、鎘46.44%;鹼洗牡蠣殼對銅和鎘的最佳去除率分別為:銅83.21%、鎘60.2%;錳改質牡蠣殼對銅和鎘的最佳去除率分別為:銅86.51%、鎘83.17%。綜合本研究結果顯示,牡蠣殼、鹼洗牡蠣殼及錳改質牡蠣殼皆有固定土壤中鎘和銅的能力,而又以錳改質牡蠣殼的效果最佳。
摘要(英) In recent years, illegal discharges of industrial wastewater have led to the infiltration of heavy metals, organic matters and other pollutants into the soil due to the rapid development of industries. When the heavy metals deposit in the soil, they are absorbed by the crop roots via the soil pore water, accumulated in the food chain, infiltrated into the groundwater, and expanded the pollution areas.
In the earlier research, oyster shells have been used as adsorbents to adsorb heavy metals in soil. Oyster shells are by-products produced by oyster farms and they are common wastes in the western coastal areas of Taiwan. They not only affect the coastline ecology, produce odors, breed mosquitoes, but also cause public health problems. In this study, oyster shells were cleaned by NaOH, and conducted surface modification by KMnO4 to form manganese oxides around the oyster shells. Isothermal adsorption and adsorption kinetic experiments were conducted to investigate the adsorption mechanisms of granular oyster shell (GOS), NaOH-cleaned granular oyster shell (NaGOS) and manganese oxide coated granular oyster shell (MOCGOS). Immobilization ability of cadmium and copper as a function of time by GOS, NaGOS and MOCGOS were evaluated by soil column experiments. In addition, three types of oyster shells were conducted soil incubation experiments to evaluate the immobilization of cadmium and copper in the real contaminated soil.
The results of isothermal adsorption and adsorption kinetic experiments of three types of granular oyster shell for cadmium and copper showed that the adsorption behavior of three types of granular oyster shells to copper was conformed to Freundlich isotherm model and pseudo-second-order kinetics mode. The isotherm adsorption constant n is greater than 1, which is a favorable adsorption reaction. Three types of granular oyster shells to cadmium fit to Langmuir isotherm model and pseudo-second-order kinetics mode.
According to the soil column experiment results, the adsorption capacity of three types of oyster shells toward cadmium or copper were in the order of MOCGOS>NaGOS>GOS. The three granular oyster shells still had removal ability for copper at the 180th hour. On the other hand, the effective time (removal>95%) to remove cadmium was in the order of MOCGOS (108 hours)>NaGOS (36 hours)>GOS (24 hours). In the soil incubation experiments, the concentrations of copper and cadmium in soil pore water were all significantly decreased. The best removal efficiency of copper and cadmium for GOS were: 81.04% for copper and 46.44% for cadmium; for NaGOS were: 83.21% for copper, 60.2% for cadmium; for MOCGOS were: 86.51% for copper, 83.17% for cadmium. To sum up, GOS, NaGOS and MOCGOS all have the ability to immobilize cadmium and copper in the soil, and the MOCGOS have the best immobilization ability for cadmium and copper in the soil.
關鍵字(中) ★ 牡蠣殼
★ 鹼洗牡蠣殼
★ 錳改質牡蠣殼
★ 鎘
★ 銅
★ 土壤管柱實驗
★ 土壤培育實驗
關鍵字(英) ★ Granular oyster shells
★ NaOH-cleaned granular oyster shells
★ Manganese oxide coated granular oyster shells
★ Cadmium
★ Copper
★ Soil column experiment
★ Incubation experiments
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 I
圖目錄 III
表目錄 V
第壹章 前言 1
1-1研究緣起 1
1-2研究目的及特色 2
第貳章 文獻回顧 4
2-1 牡蠣(Oyster) 4
2-1-1牡蠣殼 5
2-1-2牡蠣殼之性質與成分分析 6
2-1-3牡蠣殼應用 7
2-2 提升牡蠣殼孔隙率之方法 10
2-2-1錳改質技術 11
2-2-2 錳改質方法 12
2-3 土壤污染 14
2-3-1土壤污染之案例 14
2-3-2鎘(Cadmium) 16
2-3-3銅(Copper) 17
2-3-2重金屬污染之土壤復育技術 18
2-3-3牡蠣殼作為土壤復育的材料 19
2-4吸附 21
2-4-1 吸附原理 21
2-4-2 吸附機制 22
2-4-3 等溫吸附曲線 (Adsorption Isotherm) 24
2-4-4 遲滯曲線 26
2-4-5等溫吸附方程式(Adsorption isotherm) 27
2-4-6吸附動力學 30
第參章 材料與方法 32
3-1研究架構與規劃 32
3-2實驗材料與藥品 34
3-2-1土壤來源 34
3-2-2牡蠣殼來源 34
3-2-3實驗藥品 34
3-3牡蠣殼粉製備及錳改質的方法 36
3-4試驗土壤配置 37
3-5土壤重金屬總量分析 39
3-6動力吸附實驗 39
3-7等溫吸附實驗 40
3-8土壤管柱實驗 40
3-9土壤培育實驗 42
3-10材料特性分析 43
3-10-1金屬成分分析 43
3-10-2比表面積分析儀(Specific Surface Area and Porosimetry Analyzer) 44
3-10-3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 44
3-10-4能量散射光譜儀(Energy Dispersive Spectroscopy, EDS) 45
3-10-5傅立葉轉換紅外光譜儀-衰減全反射(Fourier transform infrared spectroscopy - attenuated total reflection, FTIR-ATR) 45
3-10-6 X射線光電子能譜儀分析(X-ray photoelectron spectroscopy, XPS) 46
第肆章 結果與討論 47
4-1牡蠣殼表徵結構分析 47
4-1-1 SEM分析 47
4-1-2 EDS分析 49
4-1-3 比表面積分析 51
4-1-4 FTIR分析 53
4-1-5 XPS分析 54
4-2水相吸附研究結果 58
4-2-1吸附動力學 60
4-2-2等溫吸附模式 64
4-3牡蠣殼對於污染土壤重金屬的穩定性影響 68
4-3-1 土壤管柱實驗 68
4-3-2實驗土壤配置 75
4-3-3土壤培育實驗結果 76
4-3-4實際受污染土壤培育實驗結果 81
4-4未來實際應用方法 83
第伍章 結論與建議 84
5-1結論 84
5-2建議 86
參考文獻 87
英文文獻 87
中文文獻 95
附錄 97
參考文獻 Al-Degs, Y. S., Tutunju, M. F., & Shawabkeh, R. A. (2000). The Feasibility of Using Diatomite and Mn–Diatomite for Remediation of Pb2+, Cu2+, and Cd2+from Water. Separation Science and Technology, 35(14), 2299-2310. https://doi.org/10.1081/ss-100102103
Al-Ghouti, M. A., & Da′ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. J Environ Manage, 150, 103-110. https://doi.org/10.1016/j.jenvman.2014.10.032
Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J. L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354. https://doi.org/10.1016/j.microc.2017.11.009
Asaoka, S., Yamamoto, T., Kondo, S., & Hayakawa, S. (2009). Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresour Technol, 100(18), 4127-4132. https://doi.org/10.1016/j.biortech.2009.03.075
Benjamin, M. M. (2002). Water chemistry. McGraw-Hill series in water resources and environmental engineering.
Bi, D., Yuan, G., Wei, J., Xiao, L., & Feng, L. (2020). Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. Bull Environ Contam Toxicol, 105(2), 277-282. https://doi.org/10.1007/s00128-020-02906-w
Boulamanti, A., & Moya, J. A. (2016). Production costs of the non-ferrous metals in the EU and other countries: Copper and zinc. Resources Policy, 49, 112-118. https://doi.org/10.1016/j.resourpol.2016.04.011
Chaudhry, S. A., Khan, T. A., & Ali, I. (2016). Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: Isotherm, thermodynamic and kinetic studies. Egyptian Journal of Basic and Applied Sciences, 3(3), 287-300. https://doi.org/10.1016/j.ejbas.2016.06.002
Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 135545. https://doi.org/10.1016/j.chemosphere.2022.135545
Chen, Y., Xu, J., Lv, Z., Xie, R., Huang, L., & Jiang, J. (2018). Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. J Environ Manage, 217, 646-653. https://doi.org/10.1016/j.jenvman.2018.04.007
Chung, H.-K., Kim, W.-H., Park, J., Cho, J., Jeong, T.-Y., & Park, P.-K. (2015). Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry, 28, 241-246. https://doi.org/10.1016/j.jiec.2015.02.021
Cuppett, J. D., Duncan, S. E., & Dietrich, A. M. (2006). Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chem Senses, 31(7), 689-697. https://doi.org/10.1093/chemse/bjl010
Di Leo, P., Pizzigallo, M. D., Ancona, V., Di Benedetto, F., Mesto, E., Schingaro, E., & Ventruti, G. (2012). Mechanochemical transformation of an organic ligand on mineral surfaces: the efficiency of birnessite in catechol degradation. J Hazard Mater, 201-202, 148-154. https://doi.org/10.1016/j.jhazmat.2011.11.054
Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. J Hazard Mater, 159(2-3), 235-244. https://doi.org/10.1016/j.jhazmat.2008.02.035
Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. J Hazard Mater, 161(2-3), 677-685. https://doi.org/10.1016/j.jhazmat.2008.04.020
Eren, E., Gumus, H., & Sarihan, A. (2011). Synthesis, structural characterization and Pb(II) adsorption behavior of K- and H-birnessite samples. Desalination, 279(1-3), 75-85. https://doi.org/10.1016/j.desal.2011.05.058
Fernández-Sánchez, M. L. (2018). Optical Atomic Emission Spectrometry—Inductively Coupled Plasma. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. https://doi.org/10.1016/b978-0-12-409547-2.14542-1
Han, R., Zou, W., Zhang, Z., Shi, J., & Yang, J. (2006). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. J Hazard Mater, 137(1), 384-395. https://doi.org/10.1016/j.jhazmat.2006.02.021
Hawash, H. B. I., Chmielewska, E., Netriová, Z., Majzlan, J., Pálková, H., Hudec, P., & Sokolík, R. (2018). Innovative comparable study for application of iron oxyhydroxide and manganese dioxide modified clinoptilolite in removal of Zn(II) from aqueous medium. Journal of Environmental Chemical Engineering, 6(5), 6489-6503. https://doi.org/10.1016/j.jece.2018.09.024
He, L., Meng, J., Wang, Y., Tang, X., Liu, X., Tang, C., Ma, L. Q., & Xu, J. (2021). Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. Ecotoxicol Environ Saf, 209, 111840. https://doi.org/10.1016/j.ecoenv.2020.111840
Hossain, M. F., Islam, M. S., Kashem, M. A., Osman, K. T., & Zhou, Y. (2021). Lead immobilization in soil using new hydroxyapatite-like compounds derived from oyster shell and its uptake by plant. Chemosphere, 279, 130570. https://doi.org/10.1016/j.chemosphere.2021.130570
Hsu, T. C. (2009). Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. J Hazard Mater, 171(1-3), 995-1000. https://doi.org/10.1016/j.jhazmat.2009.06.105
Huang, T. H., Lai, Y. J., & Hseu, Z. Y. (2018). Efficacy of cheap amendments for stabilizing trace elements in contaminated paddy fields. Chemosphere, 198, 130-138. https://doi.org/10.1016/j.chemosphere.2018.01.109
IUPAC. (1972). Manual of Symbols and Terminology, Appendix2, Part1, Colloid and Surface Chemistry. Pure Appl.Chem, 31, 578.
Izydorczyk, G., Mikula, K., Skrzypczak, D., Moustakas, K., Witek-Krowiak, A., & Chojnacka, K. (2021). Potential environmental pollution from copper metallurgy and methods of management. Environ Res, 197, 111050. https://doi.org/10.1016/j.envres.2021.111050
Jia, H., Liu, J., Zhong, S., Zhang, F., Xu, Z., Gong, X., & Lu, C. (2015). Manganese oxide coated river sand for Mn(II) removal from groundwater. Journal of Chemical Technology & Biotechnology, 90(9), 1727-1734. https://doi.org/10.1002/jctb.4524
Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol, 169, 622-629. https://doi.org/10.1016/j.biortech.2014.06.103
Khanam, R., Kumar, A., Nayak, A. K., Shahid, M., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B. S., & Pathak, H. (2020). Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci Total Environ, 699, 134330. https://doi.org/10.1016/j.scitotenv.2019.134330
Kuo, W.-T., Wang, H.-Y., Shu, C.-Y., & Su, D.-S. (2013). Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 46, 128-133. https://doi.org/10.1016/j.conbuildmat.2013.04.020
Kuroda, T. (1941). A Catalogue of Molluscan Shells from Taiwan (Formosa): With Descriptions of New Species. Taihoku Imperial University. https://books.google.com.tw/books?id=e1_ZoQEACAAJ
Le, T., Yang, Y., Yu, L., Huang, Z. H., & Kang, F. (2016). In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance. Sci Rep, 6, 37368. https://doi.org/10.1038/srep37368
Lee, C.-I., Yang, W.-F., & Hsieh, C.-I. (2004). Removal of copper (II) by manganese-coated sand in a liquid fluidized-bed reactor. Journal of Hazardous Materials, 114(1-3), 45-51.
Lee, J.-I., Kang, J.-K., Oh, J.-S., Yoo, S.-C., Lee, C.-G., Jho, E. H., & Park, S.-J. (2021). New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth. Journal of Cleaner Production, 328. https://doi.org/10.1016/j.jclepro.2021.129536
Lenoble, V., Laclautre, C., Serpaud, B., Deluchat, V., & Bollinger, J. C. (2004). As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin. Sci Total Environ, 326(1-3), 197-207. https://doi.org/10.1016/j.scitotenv.2003.12.012
Lian, W., Li, H., Yang, J., Joseph, S., Bian, R., Liu, X., Zheng, J., Drosos, M., Zhang, X., Li, L., Shan, S., & Pan, G. (2021). Influence of pyrolysis temperature on the cadmium and lead removal behavior of biochar derived from oyster shell waste. Bioresource Technology Reports, 15. https://doi.org/10.1016/j.biteb.2021.100709
Lin, P. Y., Wu, H. M., Hsieh, S. L., Li, J. S., Dong, C., Chen, C. W., & Hsieh, S. (2020). Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. Chemosphere, 254, 126903. https://doi.org/10.1016/j.chemosphere.2020.126903
Liu, H.-Y., Wu, H.-S., & Chou, C.-P. (2020). Study on engineering and thermal properties of environment-friendly lightweight brick made from Kinmen oyster shells & sorghum waste. Construction and Building Materials, 246. https://doi.org/10.1016/j.conbuildmat.2020.118367
Liu, S., Xie, Z., Zhu, Y., Zhu, Y., Jiang, Y., Wang, Y., & Gao, H. (2021). Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil. Environmental Technology & Innovation, 22. https://doi.org/10.1016/j.eti.2021.101388
Liu, T., Lawluvy, Y., Shi, Y., Ighalo, J. O., He, Y., Zhang, Y., & Yap, P.-S. (2022). Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering, 10(1). https://doi.org/10.1016/j.jece.2021.106502
Maliyekkal, S. M., Philip, L., & Pradeep, T. (2009). As(III) removal from drinking water using manganese oxide-coated-alumina: Performance evaluation and mechanistic details of surface binding. Chemical Engineering Journal, 153(1-3), 101-107. https://doi.org/10.1016/j.cej.2009.06.026
Mofulatsi, M. W., Prabakaran, E., Velempini, T., Green, E., & Pillay, K. (2022). Preparation of manganese oxide coated coal fly ash adsorbent for the removal of lead and reuse for latent fingerprint detection. Microporous and Mesoporous Materials, 329. https://doi.org/10.1016/j.micromeso.2021.111480
Moon, D. H., Cheong, K. H., Khim, J., Wazne, M., Hyun, S., Park, J. H., Chang, Y. Y., & Ok, Y. S. (2013). Stabilization of Pb(2)(+) and Cu(2)(+) contaminated firing range soil using calcined oyster shells and waste cow bones. Chemosphere, 91(9), 1349-1354. https://doi.org/10.1016/j.chemosphere.2013.02.007
Moussout, H., Ahlafi, H., Aazza, M., & Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 4(2), 244-254. https://doi.org/10.1016/j.kijoms.2018.04.001
Muttakin, M., Mitra, S., Thu, K., Ito, K., & Saha, B. B. (2018). Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. International Journal of Heat and Mass Transfer, 122, 795-805. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.107
Ng, K. C., Burhan, M., Shahzad, M. W., & Ismail, A. B. (2017). A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. Sci Rep, 7(1), 10634. https://doi.org/10.1038/s41598-017-11156-6
Ourednicek, P., Hudcova, B., Trakal, L., Pohorely, M., & Komarek, M. (2019). Synthesis of modified amorphous manganese oxide using low-cost sugars and biochars: Material characterization and metal(loid) sorption properties. Sci Total Environ, 670, 1159-1169. https://doi.org/10.1016/j.scitotenv.2019.03.300
Pan, Y., Chen, J., Gao, K., Lu, G., Ye, H., Wen, Z., Yi, X., & Dang, Z. (2021). Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: A laboratory column study. Sci Total Environ, 792, 148523. https://doi.org/10.1016/j.scitotenv.2021.148523
Passe-Coutrin, N., Altenor, S., & Gaspard, S. (2009). Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J Colloid Interface Sci, 332(2), 515-519. https://doi.org/10.1016/j.jcis.2008.12.079
Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., Wu, B., & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. J Hazard Mater, 400, 123116. https://doi.org/10.1016/j.jhazmat.2020.123116
Rahman, Muttakin, Pal, Shafiullah, & Saha. (2019). A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies, 12(23). https://doi.org/10.3390/en12234565
Reimann, C. C., Patrice De. (1988). Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist.
Robin, V., Tertre, E., Beaufort, D., Regnault, O., Sardini, P., & Descostes, M. (2015). Ion exchange reactions of major inorganic cations (H+, Na+, Ca2+, Mg2+ and K+) on beidellite: Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments. Applied Geochemistry, 59, 74-84. https://doi.org/10.1016/j.apgeochem.2015.03.016
Shaheen, S. M., Natasha, Mosa, A., El-Naggar, A., Faysal Hossain, M., Abdelrahman, H., Khan Niazi, N., Shahid, M., Zhang, T., Fai Tsang, Y., Trakal, L., Wang, S., & Rinklebe, J. (2022). Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresour Technol, 346, 126581. https://doi.org/10.1016/j.biortech.2021.126581
Shard, A. G. (2020). X-ray photoelectron spectroscopy. In Characterization of Nanoparticles (pp. 349-371). Elsevier.
Siddiqui, S. I., & Chaudhry, S. A. (2017). Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Safety and Environmental Protection, 111, 592-626. https://doi.org/10.1016/j.psep.2017.08.009
Sivaraman, S., Michael Anbuselvan, N., Venkatachalam, P., Ramiah Shanmugam, S., & Selvasembian, R. (2022). Waste tire particles as efficient materials towards hexavalent chromium removal: Characterisation, adsorption behaviour, equilibrium, and kinetic modelling. Chemosphere, 295, 133797. https://doi.org/10.1016/j.chemosphere.2022.133797
Sriphong, L., Rojanarata, T., Gasser, C., & Lendl, B. (2018). At-line analysis of pharmaceutical nanofiber-products using ATR-FTIR spectroscopy. TJPS, 42(2018).
Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F., & Singh, R. P. (2017). Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 5. https://doi.org/10.3389/fenvs.2017.00064
Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004
Taffarel, S. R., & Rubio, J. (2010). Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 23(14), 1131-1138. https://doi.org/10.1016/j.mineng.2010.07.007
Tan, G., Liu, Y., & Xiao, D. (2019). Preparation of manganese oxides coated porous carbon and its application for lead ion removal. Carbohydr Polym, 219, 306-315. https://doi.org/10.1016/j.carbpol.2019.04.058
Tan, G., Wu, Y., Liu, Y., & Xiao, D. (2018). Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent. Journal of the Taiwan Institute of Chemical Engineers, 84, 85-92. https://doi.org/10.1016/j.jtice.2017.12.031
Tan, W. T., Zhou, H., Tang, S. F., Zeng, P., Gu, J. F., & Liao, B. H. (2022). Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. Environ Pollut, 300, 118899. https://doi.org/10.1016/j.envpol.2022.118899
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environ Sci Pollut Res Int, 27(9), 9126-9134. https://doi.org/10.1007/s11356-019-07059-w
Teng, S.-X., Wang, S.-G., Gong, W.-X., Liu, X.-W., & Gao, B.-Y. (2009). Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism. Journal of Hazardous Materials, 168(2-3), 1004-1011.
Wan, S., Qu, N., He, F., Wang, M., Liu, G., & He, H. (2015). Tea waste-supported hydrated manganese dioxide (HMO) for enhanced removal of typical toxic metal ions from water. RSC Advances, 5(108), 88900-88907. https://doi.org/10.1039/c5ra16556c
Wang, M. C., Sheng, G. D., & Qiu, Y. P. (2014). A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. International Journal of Environmental Science and Technology, 12(5), 1719-1726. https://doi.org/10.1007/s13762-014-0538-7
Wei, Y.-L., Kuo, P.-J., Yin, Y.-Z., Huang, Y.-T., Chung, T.-H., & Xie, X.-Q. (2018). Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials. Construction and Building Materials, 172, 224-232. https://doi.org/10.1016/j.conbuildmat.2018.03.242
Wu, Q., Chen, J., Clark, M., & Yu, Y. (2014). Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 311, 264-272. https://doi.org/10.1016/j.apsusc.2014.05.054
Wu, S., Liang, L., Zhang, Q., Xiong, L., Shi, S., Chen, Z., Lu, Z., & Fan, L. (2022). The ion-imprinted oyster shell material for targeted removal of Cd(II) from aqueous solution. J Environ Manage, 302(Pt A), 114031. https://doi.org/10.1016/j.jenvman.2021.114031
Xia, C., Zhang, X., & Xia, L. (2021). Heavy metal ion adsorption by permeable oyster shell bricks. Construction and Building Materials, 275. https://doi.org/10.1016/j.conbuildmat.2020.122128
Yang, B., & Jang, J. G. (2020). Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator. Construction and Building Materials, 257. https://doi.org/10.1016/j.conbuildmat.2020.119552
Yen, H. Y., & Li, J. Y. (2015). Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. J Environ Manage, 161, 344-349. https://doi.org/10.1016/j.jenvman.2015.07.024
Yoon, G.-L., Kim, B.-T., Kim, B.-O., & Han, S.-H. (2003). Chemical–mechanical characteristics of crushed oyster-shell. Waste Management, 23(9), 825-834. https://doi.org/10.1016/s0956-053x(02)00159-9
Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341-349. https://doi.org/10.1016/j.chemosphere.2016.10.069
Zhao, J., Liu, J., Li, N., Wang, W., Nan, J., Zhao, Z., & Cui, F. (2016). Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chemical Engineering Journal, 304, 737-746. https://doi.org/10.1016/j.cej.2016.07.003
Zhou, F., Ye, G., Gao, Y., Wang, H., Zhou, S., Liu, Y., & Yan, C. (2022). Cadmium adsorption by thermal-activated sepiolite: Application to in-situ remediation of artificially contaminated soil. J Hazard Mater, 423(Pt A), 127104. https://doi.org/10.1016/j.jhazmat.2021.127104
Zou, W., Han, R., Chen, Z., Jinghua, Z., & Shi, J. (2006). Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1-3), 238-246. https://doi.org/10.1016/j.colsurfa.2006.01.008
Zou, W., Zhang, J., Li, K., Han, P., & Han, R. (2009). Characterization of manganese oxide and the adsorption of copper (II) and lead (II) ions from aqueous solutions. Adsorption Science & Technology, 27(6), 549-565.

王卿昧,「奈米孔隙吸附劑吸附VOCs之吸附平衡研究」,碩士論文,中原大學,桃園市(2003)。
江毓庭,「廢棄牡蠣殼發泡隔熱磚性能驗證與評估之研究」,碩士論文,國立臺北科技大學,臺北市(2021)。
朱東川,「廢棄牡蠣殼粉取代水泥及細骨材對水泥砂漿性質之影響」,碩士論文,國立雲林科技大學,雲林市(2002)。
李哲榮,「牡蠣殼粉資源化做為水泥膠結材料之研究」,碩士論文,國立臺灣海洋大學,基隆市(2004)。
林聖賢,「以牡蠣殼粉結合二氧化鈦光觸媒降解PCBs之研究」,碩士論文,國立屏東科技大學,屏東縣(2010)。
林玲珠,「表面改質之多孔洞吸附介質對特定污染物吸附之研究」,碩士論文,國立中央大學,桃園市(2012)。
翁鈺婷,「牡蠣殼作為植物及聲音載體的材質應用」,碩士論文,南臺科技大學,台南市(2015)。
陳又瑄,「廢觸媒製備吸附劑捕獲 CO2及其吸附特性之探討」,碩士論文,國立雲林科技大學,雲林市(2014)。
陳昱舜,「以淨水廠碳酸鈣結晶安定受鎘污染土壤之研究」,碩士論文,國立屏東科技大學,屏東市(2009)。
陳淦政,「灰階改質牡蠣殼粉環保隔熱塗料之熱特性研究」,碩士論文,明志科技大學,新北市(2015)。
陳柏佑,「廢棄蚵殼配合礦物摻料對水泥砂漿工程性質之研究」,碩士論文,國立高雄應用科技大學,高雄市(2010)。
莊淳元,「運用沸石吸附半導體揮發性有機物丙酮、單甲基醚丙二醇及乙酸甲氧基異丙酯控制技術之評估研究」,碩士論文,國立雲林科技大學,雲林市(2003)。
莊緯鵬,「商用椰纖維活性碳顆粒對吸附染料能力之研究」,碩士論文,崑山科技大學,臺南市(2014)。
許育婷,「焚化底渣合成環保吸附材料及其應用效能與特性研究」,碩士論文,逢甲大學,台中市(2021)。
黃昭銘,「商用椰纖維活性碳顆粒對吸附染料能力之研究」,碩士論文,崑山科技大學,台南市(2014)。
游子儀,「牡蠣殼粉、覆鐵牡蠣殼粉及覆錳牡蠣殼粉作為介質進行過濾處理地下水中重金屬」,碩士論文,明志科技大學,新北市(2019)。
鄭燕聲,「沸石吸附劑之改質及對硫化氫氣體吸附性能之研究」,碩士論文,國立高雄應用科技大學,高雄市(2009)。
賴家煒,「牡蠣殼之再利用研究」,碩士論文,國立新竹教育大學,新竹市(2009)。
蕭坤煜,「牡蠣殼粉應用於密級配瀝青混凝土之可行性評估」,碩士論文,國立成功大學,台南市(2016)。
顏江河,「以植生復育法移除平地造林地土壤重金屬污染」,行政院農業委員會林務局委託研究計畫,國立中興大學,台中市(2010)。
謝亞儒,「吸附劑對硫化氫氣體吸附性能及動力學之研究」,碩士論文,國高雄應用科技大學,高雄市(2016)。
蘇德馨,「廢牡蠣殼應用於控制性低強度材料可行性之研究」,碩士論文,國立高雄應用科技大學,高雄市(2011)。
行政院環保局,土壤污染物管制標準,主管法規查詢系統,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0110005,2011。
行政院農業委員會漁業,漁業統計,漁業統計年報查詢,https://www.fa.gov.tw/cht/PublicationsFishYear/index.aspx。
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明