摘要(英) |
In recent years, with climate change, disaster prevention and rescue has become one of the peacetime tasks of the Taiwan military, and the use of Taiwanese military-style water purification equipment to cooperate with the Central Disaster Response Center to assist in water purification operations has also become normal. The motivation of this study is how to provide water in a timely and timely manner and quickly, and comply with the "Drinking Water Quality Standards" formulated by the Environmental Protection Department of the Executive Yuan, so as to provide sufficient and safe drinking water to maintain people′s basic survival and living needs, and reduce the impact of unexpected disasters.
In this study, three water areas including Shimen Reservoir in Taoyuan City, Guanyin Beach and Gongliao Yan in New Taipei City were mainly used as water intake sources, and the influence of RO film fouling and blockage on water production efficiency was discussed by sampling different water quality, using equipped filtration equipment, and measuring water quality indicators for the inlet water taken and the filtered outflow water, and then discussing the effect of RO film fouling and blockage on water production efficiency through the difference in inlet and outlet water quality parameters and the influence of different water quality parameters on filtration efficiency. Through relevant data and statistical analysis, the correlation and significance between water quality parameters and RO membrane occlusion were discussed.
Based on the comprehensive results, it can be seen that the changes of raw water and clean water quality parameters after filtration in different regions affected the formation of RO film fouling and blockage, and the water quality of Shimen Reservoir was highly correlated and significantly affected by the turbidity value of water and RO membrane obstruction in the 16th hour of continuous operation of the system container. The water quality of Guanyin Beach was highly correlated and significantly affected by the turbidity value of the water and RO membrane occlusion in the 8th hour of continuous operation of the system container. However, the water quality of Gongliaoyan was highly correlated and significantly affected by the TDS value and RO membrane blockage in the 24th hour of continuous operation of the system container, and it can be determined that with different water sources, the parameter values of different water quality (such as turbidity value and TDS value) change, resulting in easy fouling and blockage on the surface of RO membrane, which in turn affects the filtration efficiency and water production efficiency.
By making suggestions on the three aspects of policy, implementation and hardware facilities, in terms of policy, using Taiwan′s defense department to allocate water purification equipment, the areas that can be used for water supply can be listed as a support list in advance, so as to facilitate the rapid and timely completion of water supply tasks in the event of disasters, and in water source sampling, general fresh water is more suitable than seawater, because seawater contains high salinity, high concentration of inorganic substances and microorganisms can easily cause RO membrane blockage and affect filtration and water production efficiency. In terms of policy, in view of the limited water quality extraction environment, although the water bodies of these three sites are different, the water samples obtained are still relatively limited, it is recommended that more locations can be used as water intake points for comparison, so as to break away from the restrictions of the water quality intake framework, so that the data collected by the Institute can be more diversified and meet the needs of the current situation; In terms of hardware facilities, the filtering equipment and distribution measuring instruments are not diversified enough to be updated according to time to improve the filtration efficiency and detect more accurately. Whether it is in terms of policy, implementation or hardware facilities, if it can be greatly improved and enhanced, it is believed that the accuracy and performance of the follow-up relevant research data can be greatly improved, the values can be closer to the current situation, and the maximum effectiveness of the equipment can be brought into play. |
參考文獻 |
1.經濟部水利署全球資訊網(wra.gov.tw)
2.國際水資源協會(https://iwa-network.org/)
3.前瞻基礎建設計畫—水環境建設,行政院新聞傳播處,110年3月11日,前瞻基礎建設計畫—水環境建設 (行政院全球資訊網-重要政策) (ey.gov.tw)
4.飲用水管理條例-全國法規資料庫 (moj.gov.tw)
5.行政院環境保護署主管法規共用系統-飲用水水質標準(epa.gov.tw)
6.飲用水管理條例-全國法規資料庫 (moj.gov.tw)
7.聯合國人居署《2022年世界城市報告》
8.台北自來水事業處臺北自來水事業處 (water.gov.taipei)
9.國家科學及技術委員會國家科學及技術委員會 (wsts.nstc.gov.tw)
10.自來水水源及淨水處理,臺北自來水事業處,
( https://www.water.gov.taipei/cp.aspx
n=0E5CC03B9D879F8B)
11.水質參數 - 教育百科 | 教育雲線上字典 (cloud.edu.tw)
12.水質課,水質參數介紹,臺灣自來水公司第十二管理處,
(https://www.water.gov.tw/dist12/Contents?nodeId=7568)
13.3M™ DS02-D 簡易型全面級淨水器 | 3M 臺灣
14.RO逆滲透膜濾材、RO逆滲透原理【水精靈淨水系統】(aquawin.com.tw)
15.經濟部水利署北區水資源局-石門水庫(https://www.wranb.gov.tw)
16.桃園市政府海岸管理工程處-觀音海灘 (https://www.tyoca.gov.tw/)
17.經濟部水利署北區水資源局-貢寮堰集
(https://www.wranb.gov.tw/3452/3463/25328/25358)
18.石門水庫管理中心(https://shihmen.wranb.gov.tw/main-facilities/shimen-zhongzhuang)
19.桃園市環境教育全球資訊網(https://tydep-eew.com.tw/news-detail.php?id=358)
20.基隆缺水擬抽海水淡化 經濟部、軍方將出動淨水設備(聯合報)
(https://udn.com/vote2022/story/7323/6543741)
21.行政院環境保護署全國環境水質監測資訊網 (epa.gov.tw)
22.「POWPU-3000型淨水裝備操作手冊」,國防部陸軍司令部(桃園龍潭),2005年3月1日,頁1-2~1-10。
23.「陸軍工兵給水排作戰教範(第二版)」,國防部陸軍司令部(桃園龍潭),2013年11月13日,頁1-6。
24.「陸軍野戰淨水裝備操作手冊(第一版)」,國防部陸軍司令部(桃園龍潭),2010年10月29日,頁1-1~1-25
25.黃追,「正視氣候變遷風險之影響」,內部稽核,第113期,2021年4月1日,頁42-48。
26.周嫦娥,「臺灣水資源利用效率初探」,土木水利 第48卷第4期,2021年8月,頁26-27。
27.李明營、洪浩哲、許晃雄、王品翔,「2020-2021臺灣百年大旱原因分析」,大氣科學,中華民國氣象學會,第51期第1卷,2023年1月,頁49。
28.郭乃文、李崇恩,「災害威脅下臺灣都市飲用水脆弱性評估指標系統之探討」,中國地理學會刊,65,17-40,DOI:10.29972/BGSC.202006_(65).0002。
29.陳泰宏、林伯儒、 黃政強,「聚丙烯腈奈米纖維複合濾材在水過濾之應用」,紡織綜合研究期刊,第20卷4期,2010年10月。
30.劉錦添,葉俊榮,王俊秀,李玲玲,駱尚廉,黃書禮,蔡慧敏,施文真,「永續臺灣的評量系統(Ⅵ)」,行政院國家科學委員會專題研究計畫成果報告,2005年3月。
31.林瑩峰、荊樹人、李得元、陳韋志,「循環水養殖之淨水裝備」,嘉南藥理科技大學生態工程技術研發中心專利公報,30卷19期,2003年07月01日。
32.吳雪舫(富台工程股份有限公司),「向大海要水喝 ,逆滲透海水淡化技術」,科技大觀園,國家科學及技術委員會,2016年01月05日。
33.許皓翔,「水處理薄膜技術介紹」,創新水科技研發服務網,2021年05月06日,https://www.itriwater.org.tw/Forum/article_more?id=43。
34.洪雋為,「逆滲透」,科學online,國立臺灣大學(臺北市),2013年8月,https://highscope.ch.ntu.edu.tw/wordpress/?p=42591。
35.楊祐任、莊順興,「水回收再利用薄膜積垢指標與監測技術」,工業污染防治,第149期,2020年9月,頁95。
36.焦自強、曾再微,「分離膜程序淺談」,化工技術,第三卷第四期,1995年。
37.方進忠,「薄膜技術於水處理之應用」,技術與訓練,第二十三卷,第六期,1998年,第18- 33頁。
38.工業污染防治技術手冊之十八,「工業廢水逆滲透處理」,經濟部工業污染防治技術服務團,財團法人中國技術服務社編印,1988年。
39.張錦松、Vigneswaran, S.,「薄膜過濾程序」,自來水會刊,50:90-94,1994年。
40.林利故,「混凝劑影響薄膜積垢指標之研究」,朝陽科技大學環境工程與管理系,碩士論文,2005年7月,頁14~15。
41.葉宣顯,「西歐自來水處理程序發展之近況」,自來水會刊,15(4):1-11,1996年。
42.孫志仁,莊順興,「常用薄膜積垢指標介紹」,桃園市大學校院產業環保技術服務團,環保簡訊第48期,2021年7月,頁5-3~5-7。
43.劉東方,紀濤,陳璐納,「濾膜處理高濃度廢液分離規律研究」,城市環境與城市生態,15(5),2002年,頁37-39。
44.FILMTECTM,逆滲透和奈濾膜元件-產品與技術手冊,2008 版
45.江昆達、林全信 (1997),「豐富的海洋資源」,台灣書店,初版
46.蔡伊庭,「矽氧烷交聯幾丁聚醣複合薄膜用於水過濾」,宜蘭大學化學工程與材料工程學系,碩士論文,2014年。
47.陳文欽、藍奕程、李圳翊、馮志翔、余佳恒,「家用簡易淨水壺之效能探討」,元培科技大學-健康休閒管理系專題,2012年12月。
48.林建榮,「薄膜運用在海水淡化前處理之最佳清洗操作」,嘉南藥理科技大學環境工程與科學系,碩士論文,2012年7月,頁8-9。
49.Naomi Sawaki、澤木直美,「多階段逆滲透及壓力延遲滲透海水淡化程序之能耗分析與成本評估」,國立台灣大學化學工程學系研究所,碩士論文,2020年6月。
50.章日行、張淑貞,「探討電透析技術於海水淡化處理的特點及其處理效能」,朝陽科技大學環境工程與管理系碩士班,2006年。
51.徐嘉婉,「薄膜分離技術應用於水處理之案例探討」,逢甲大學環境工程系,碩士論文,2007年。
52.楊泓文,「光電產業廢水處理單元中RO膜阻塞改善分析研究」,國立交通大學工學院永續環境科技學程,碩士論文,2013年2月,頁11。
53.楊惠玲,「海水淡化程序RO膜生物性阻塞之特性及減緩」,國立交通大學環境工程研究所,博士論文,2009年7月。
54.黃晟祐,「逆滲透系統於水回收之最佳操作與維護」,國立臺灣大學工學院環境工程學研究所,碩士論文2010年6月,頁14。
55.Mulder, Marcel, Basic principles of membrane technology (2ed.). Kluwer Academic: Springer. (1996).
56.Gryta, M. (2011), The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process, Separation and Purification Technology, 80, 293- 299.
57.Al-Amoudi, A. S. (2010), Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review, Desalination, 259, 1-10.
58.Yin, W., Wang, Y., Liu, L., and He, J. (2019), Biofilms: The Microbial 「Protective Clothing」 in Extreme Environments, International Journal of Molecular Sciences, 20, 3423.
59.Flemming H.C.,“Reverse osmosis membrane biofouling”, Experimental Thermal and Fluid Science, 14, 1997.
60.Byrne, W. (2002) Reverse Osmosis : A Practical Guide for Industrial Users, Tall Oaks Publishing Inc., Colorado.
61.Dalvi, A.G.I., Al-Rasheed, R. and Javeed, M.A. (2000) Studies on organic foulants in the seawater feed of reverse osmosis plant of SWCC, Desalination, 132, 217-232.
62.Winters, H. (1987) Control of organic fouling at two seawater reverse osmosis plants, Desalination, 66, 319-325.
63.Marwan, M.A., Aly, N.H. and Saadawy, M.S. (1995) Simple code for the estimation of scaling potential, Desalination, 101, 279-286.
64.Al-Shammari, M., Salman, A., Al-Shammari, S., and Ahmad, M. (2005) Simple program for the estimation of scaling potential in RO systems, Desalination, 184, 139-147.
65.Sheikholeslami, R. and Ong, H.W.K. (2003) Kinetic and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 M, Desalination,157, 217-234.
66.Sommariva, C., Comite, A., Capannelli, G. and Bottino, A. (2007) Relationship between biofouling and recovery ratio: the theoretical approach and one experimental case,
Desalination, 204, 175–180.
67.Petrucci, G. and Rosellini, M. (2005) Chlorine dioxide in seawater for fouling control and post-disinfection in potable waterworks, Desalination, 182, 283-291.
68.Abd El Aleem, F. A., Al-Sugair, K. A. and Alahmad, M. I. (1998) Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia, International
Biodeterioration & Biodegradation, 4119-4123.
69.Carnahan, R.P., Bolin, L. and Scuratt, W. (1995) Biofouling of PVD-1 reverse osmosis elements in the water treatment plant of the city of Dunedin, Florida,
Desalination, 102,
235-244.
70.Petrucci, G. and Rosellini, M. (2005) Chlorine dioxide in seawater for fouling control and post-disinfection in potable waterworks, Desalination, 182, 283-291.
71.Bereschenko, L.A., Heilig, G.H.J., Nederlof, M.M., Van Loosdrecht, M.C.M., Stams, A.J.M., Euverink, G.J.W. (2008) Molecular characterization of the bacterial communities
in the different compartments of a full-scale reverse-osmosis water purification plant, Applied and Environmental Microbiology, 74, 5297-5304.
72.Munn, C.B. (2004) Marine Microbiology - Ecology and Applications. Bios-Garland Scientific Publishers, Abingdon & New York.
73.Crozes, G. F., Jacangelo, J. G., Anselme, C., and Laine, J. M.,“Impact of Ultrafiltration operating conditions on membraneirreversible fouling,”Joural of Membrane Science, 124:63-76(1997).
74.Seymour S. Kremen and Matt Tanner,“Silt density indices(SDI),percent plugging factor(%PF):their relation to actual foulant deposition”pp.259-262, Deslination(1998).
75.Nederlof, M. M., Kruithof, J. C., and Hofman Jan A. M. H.,“ Integrated multi-objective membrane systems application ofreverse osmosis at the Amsterdam Water Supply,”Desalination,119:263-273(1998).
76.Schippers and J.Verdouw,”The modified fouling index, a method of determining the fouling characteristics of water, pp.137-148 , Desalination(1980).
77.Taylor and E.P.Jacobs, “ Reverse osmosis and nanofiltration ” ,in:Water Treatment Membrane Processes,McGraw-Hill,chapter 9,pp.16-28(1996).
78.Zhao, Y., Song, L. and Ong, S.L. (2010) Fouling behavior and foulant characteristics of reverse osmosis membranes for treated secondary effluent reclamation. Journal of
Membrane Science 349(1-2), 65-74.
79.Adham, S.S., Snoeyink, V.L., Clark, M.M. and Anselme, C. (1993) Predicting and verifying TOC removal by PAC in pilot-scale UF system. J. Am. Water Works Ass. 85(12), 58-68.
80.Abdel-Jawad, M., Ebrahim, S., Al-Atram, F. and Al-Shammari, S. (1997) Pretreatment of the municipal wastewater feed for reverse osmosis plants. Desalination 109(2), 211-223.
81.Ang, W.S., Lee, S. and Elimelech, M. (2006) Chemical and pHysical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science 272(1-2),
198-210.
82.Qin, J.-J., Htun Oo, M., Nyunt Wai, M., Lee, H., Hong, S.P., Kim, J.E., Xing, Y. and Zhanga, M. (2005) Pilot study for reclamation of secondary treated sewage effluent.
Desalination 171(3), 299-305.
83.Ang, W.S., Lee, S. and Elimelech, M. (2006) Chemical and pHysical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science 272(1-2),
198-210.
84.Qin, J.-J., Htun Oo, M., Nyunt Wai, M., Lee, H., Hong, S.P., Kim, J.E., Xing, Y. and Zhanga, M. (2005) Pilot study for reclamation of secondary treated sewage effluent. Desalination 171(3), 299-305.
85.Qin, J.-J., Oo, M.H., Kekre, K.A. and Liberman, B. (2009) Development of novel backwash cleaning technique for reverse osmosis in reclamation of secondary effluent. Journal of
Membrane Science 346(1), 8-14.
86.Sagiv, A. and Semiat, R. (2005) Backwash of RO spiral wound membranes.Desalination 179(1-3), 1-9. |