博碩士論文 109356014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:161 、訪客IP:3.143.22.125
姓名 陳彥良(Yen-Liang Chen)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 以低亞硫酸鈉進行自營性脫硝反應之可行性研究
(A feasibility study of autotrophic denitrification with sodium dithionite)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 污泥脫水濾液無機物成分之結垢潛勢研究★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響
★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究★ 超音波水解生物污泥機制探討
★ 生物除氮程序(MLE Process)效能評估及污泥活性探討★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-30以後開放)
摘要(中) 本研究架構一種新的尋找自營性脫硝(Autotrophic denitrification)的電子供給者(Electron donor)的理論模式,有效的找出尚未被運用於自營性脫硝的電子供給者。理論推導的依據為氧化數(Oxidation number)、混成軌域(Hybrid orbital)、立體效應(Steric effect),再以氧化還原電位(Redox potential)及吉布斯自由能(Gibbs free energy)做為理論驗證上述推導為正確。後以實驗驗證利用理論推導及理論驗證所找到之新的電子供給者確實能夠進行自營性脫硝反應,確定了用理論推導及理論驗證的找尋新的自營性脫氮反應電子供給者的模式可行。這種方式將有助於研究者找出其它可用的電子提供者,可避免試誤縮短研究時長。
利用上述理論的方式挑選出類似硫代硫酸鈉(Sodium thiosulfate , Na2S2O3)的脫氮行為的電子提供者-低亞硫酸鈉(Sodium dithionite, Na2S2O4)。並後續以實驗證實低亞硫酸鈉可以在自營性脫硝過程中做為電子供給者以除去廢水中的硝酸鹽氮(NO3--N),與理論的結果一致,也證實理論模式尋找電子供給者的方式有效可行。
實驗驗證結果顯示,在批次反應器(Sequential batch reactor, SBR)中,活性污泥經添加低亞硫酸經過約50天的馴養後,在系統起始總氧化氮(NOX-N)濃度為87.68±4.52 mg/L,溫度區間在18~28℃時,可以穩定持續在24小時內到達80%以上的總氧化氮去除率(Removal efficiency)。在MLVSS=1,220~2,460 mg/L,S/N= 3.05 (molar ratio)時,每日去除之總氧化氮去除效率(Revomal rate)為73.53±5.39 mg/L•d,比脫硝速率最高為4.93 mg NO3--N/g VSS•hr,研究顯示使用低亞硫酸鈉為電子供給者比使用硫代硫酸鈉有更突出的表現,此點與理論相同。
微生物增長量(Biomass yield, Y)為0.185 mg VSS/mg NOX-N reduced,污泥停留時間(Solid retention time, SRT)為70.71±12.18 天,污泥容積指數 (Sludge volume index, SVI)為35.52±2.54 mL/g,硫酸根產生量為7.37±1.69 g SO42-/g NO3--N removed。此皆比使用硫代硫酸鈉為電子供給者有更突出的表現。在MLVSS=1,667~2,460 mg/L時,亞硝酸鹽氮比硝酸鹽氮更早被去除,無累積現象。
反應槽中的植種污泥是來自於好氧槽,顯示了好氧污泥可以直接用來轉化為可供自營性脫氮的厭氧污泥。提供了尚未有除氮設備但具有除COD的好氧生物槽的工業,直接轉化成可自營性脫硝系統的便利性。
使用低亞硫酸鈉之製程之工業,可將廢水分流,導入厭氧生物槽中與來自好氧槽含硝酸鹽氮排放水進行馴養,同時去除硝酸鹽氮及低亞硫酸鈉以達到以廢減廢的理想。這項技術可以運用於印染業、食品製造加工業等使用低亞硫酸鈉的工業。
本研究利用理論模式快速找到新的自營性脫硝反應之電子供給者,有鑑於資源日益缺乏的世界,若能以此方式找出更多的電子供給者,將有助於資源利用,而本研究找出之低亞硫酸鈉為一種新發現,尚未見於文獻中,而其作為電子供給者的脫硝性能突出,能希望未來的研究者可以嘗試低亞硫酸鈉的進一步研究。
摘要(英) We provide a new concept to develop a new electron donor for autotrophic denitrification successfully by thinking of oxidation number, hybrid orbital, steric effect, the redox potential and Gibbs free energy. The method by using theory to develop an new electron donor is useful and easy.
In this study, the sludge from the active aerobic pool of the industrial plant was domesticated by adding sodium hyposulfite and synthetic wastewater to test if sodium dithionite could be used as an electron donor in the anaerobic autotrophic denitrification process to remove nitrate nitrogen and verify the theory.
The result is sodium dithionite can be used as an electron donor to remove nitrate nitrogen from wastewater in autotrophic denitrification process. The study shows that after 50 days domestication with S/N= 2.05 (molar ratio) in 20L SBR, the active bacteria can remove NOX-N with 73.53±5.39 mg/L•d at the initial 87.68±4.52 mg/L NOx-N loading. The maximum denitrification rate is 4.93 mg NO3--N/g VSS•hr, the yield is 0.185 mg VSS/mg NOX-N reduced, the SRT is 70.71±12.18 days and the SVI is 35.52±2.54 mL/g. The nitrite can be all removed before the nitrate is thoroughly removed while MLSS is between 1,667 mg/L and 2,460 mg/L。All evidence shows that sodium dithionite is a better electron donor than sodium thiosulfate.
The sodium dithionite can be obtained from the wastewater of industrial which used it in production process by shunting. The seed sludge can be prepared from the aerobic pool which is normally used to consume COD. We can combine both to construct an anaerobic autotrophic denitrification system easily and economically and achieve the goal of double wastes reduction.
關鍵字(中) ★ 自營性脫硝反應
★ 電子供給者
★ 低亞硫酸鈉
★ 硫代硫酸鈉
★ S/N
關鍵字(英) ★ autotrophic denitrification
★ electron donor
★ sodium dithionite
★ sodium thiosulfate
★ S/N
論文目次 摘要...........................i
目 錄.......................v
圖目錄.......................vii
表目錄........................ix
第一章 前言...................1
1.1研究緣起....................1
1.2研究目的....................4
第二章 文獻回顧................5
2.1脫氮反應....................5
2.2生物脫氮技術.................6
2.2.1生物處理技術...............6
2.2.2異營性生物脫氮技術.........8
2.2.3自營性生物脫氮技術.........8
2.2.4自營性脫硝微生物..........11
2.2.5自營性脫硝反應條件........13
2.3氧化數.....................14
2.4混成軌域...................15
2.5立體效應...................19
2.6氧化還原電位...............20
2.7吉布司自由能...............21
2.8低亞硫酸鈉.................22
2.9 生物系統反應式............23
第三章 研究方法..............25
3.1研究架構...................25
3.2研究流程與步驟..............26
3.2.1理論推導.................26
3.2.2理論驗證.................26
3.2.3實驗驗證.................27
3.3實驗材料、設備與分析方法.....31
3.3 1實驗設備..................31
3.3.2實驗材料..................32
3.3.3樣品分析方法..............33
第四章 結果與討論..............35
4.1理論推導....................35
4.1.1氧化數....................35
4.1.2混成軌域..................36
4.1.3立體效應..................38
4.2理論驗證....................39
4.2.1氧化還原電位..............39
4.2.2吉布斯自由能..............40
4.3實驗驗證....................41
4.3.1污泥馴養..................41
4.3.2 SRT實驗..................57
4.3.3 S/N實驗..................64
4.3.4 空白實驗.................70
4.4討論........................71
4.4.1 MLVSS的影響..............71
4.4.2 S/N的影響................77
第五章 結論....................82
第六章 建議....................83
參考文獻.......................84
附錄...........................89
參考文獻 行政院環境保護署 (2019) ”放流水標準”
王公辰 (2022) “An investigation on the kinetic characteristics of activated sludge conducting heterotrophic and autotrophic dentrification”
Ahn Y.-H. (2006). "Sustainable nitrogen elimination biotechnologies: A review." Process Biochemistry 41(8): 1709-1721.
Barberá J. J., Metzger A. and Wolf M. (2000). "Sulfites, thiosulfates, and dithionites." Ullmann′s Encyclopedia of Industrial Chemistry.
Beijerinck M. (1904). "Ueber die bakterien, welche sich im dunkeln mit kohlensäure als kohlenstoffquelle ernähren können." Centralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 11: 592-599.
Bensalah N., Nicola R. and Abdel-Wahab A. (2014). "Nitrate removal from water using UV-M/S2O42− advanced reduction process." International Journal of Environmental Science and Technology 11(6): 1733-1742.
Birk J. P. (1994). Chemistry, Houghton Mifflin College Division.
Božič M. and Kokol V. (2008). "Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes." Dyes and Pigments 76(2): 299-309.
Bratsch S. G. (1989). "Standard electrode potentials and temperature coefficients in water at 298.15 K." Journal of Physical and Chemical Reference Data 18(1): 1-21.
Chang C. C., Tseng S. K. and Huang H. K. (1999). "Hydrogenotrophic denitrification with immobilized alcaligenes eutrophus for drinking water treatment." Bioresource Technology 69(1): 53-58.
Charles A. M. (1969). "Mechanism of thiosulfate oxidation by thiobacillus intermedius." Archives of Biochemistry and Biophysics 129(1): 124-130.
Christensen D. R. and Mccarty P. L. (1975). "Multi-process biological treatment model." Journal (Water Pollution Control Federation): 2652-2664.
Chung J., Amin K., Kim S., Yoon S., Kwon K. and Bae W. (2014). "Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor." Water Research 58: 169-178.
Chung S. K. (1981). "Mechanism of sodium dithionite reduction of aldehydes and ketones." The Journal of Organic Chemistry 46(26): 5457-5458.
Cooper G. S. and Smith R. (1963). "Sequence of products formed during denitrification in some diverse western soils." Soil Science Society of America Journal 27(6): 659-662.
Dean J. A. (1979). "1979, lange’s handbook of chemistry." New York: Mc Graw Hill Book Company 12: 10-70.
Di Capua F., Ahoranta S. H., Papirio S., Lens P. N. and Esposito G. (2016). "Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of thiobacillus." Process Biochemistry 51(10): 1576-1584.
Di Capua F., Pirozzi F., Lens P. N. and Esposito G. (2019). "Electron donors for autotrophic denitrification." Chemical Engineering Journal 362: 922-937.
Douglas B. E. (1965). Concepts and models of inorganic chemistry, Oxford & IBH publication co.
Drozdova Y., Steudel R., Hertwig R. H., Koch W. and Steiger T. (1998). "Structures and energies of various isomers of dithionous acid, H2S2O4, and of its anion HS2O4-1." The Journal of Physical Chemistry A 102(6): 990-996.
Firestone M. and Davidson E. (1989). "Microbiological basis of NO and N2O production and consumption in soil." Exchange of trace gases between terrestrial ecosystems and the atmosphere 47: 7-21.
Firestone M. K. and Tiedje J. M. (1979). "Nitric oxide as an intermediate in denitrification: Evidence from nitrogen-13 isotope exchange." Biochemical and biophysical research communications 91(1): 10-16.
Fowdar H. S. (2015). "Evaluation of sustainable electron donors for nitrate removal in different water media." Water Research 85: 487-496.
Fujihara S. and Yoneyama T. (1993). "Effects of ph and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017." Applied and Environmental Microbiology 59(4): 1104-1109.
Gevertz D., Telang A. J., Voordouw G. and Jenneman G. E. (2000). "Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine." Applied and Environmental Microbiology 66(6): 2491-2501.
Goris J., De Vos P., Coenye T., Hoste B., Janssens D., Brim H., Diels L., Mergeay M., Kersters K. and Vandamme P. (2001). "Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. Nov., Ralstonia metallidurans sp. Nov. and Ralstonia basilensis steinle et al. 1998 emend." International Journal of Systematic and Evolutionary Microbiology 51(5): 1773-1782.
Ho C. M., Tseng S. K. and Chang Y. J. (2001). "Autotrophic denitrification via a novel membrane-attached biofilm reactor." Letters in Applied Microbiology 33(3): 201-205.
Hoeft S. E., Blum J. S., Stolz J. F., Tabita F. R., Witte B., King G. M., Santini J. M. and Oremland R. S. (2007). "Alkalilimnicola ehrlichii sp. Nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor." International Journal of Systematic and Evolutionary Microbiology 57(3): 504-512.
Hunter W. J. (2007). "An azospira oryzae (syn dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium." Current Microbiology 54(5): 376-381.
Juncher Jørgensen C., Jacobsen O. S., Elberling B. and Aamand J. (2009). "Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment." Environmental Science & Technology 43(13): 4851-4857.
Kaji A. and Mcelroy W. (1959). "Mechanism of hydrogen sulfide formation from thiosulfate." Journal of Bacteriology 77(5): 630.
Kappler A., Schink B. and Newman D. K. (2005). "Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain bofen1." Geobiology 3(4): 235-245.
Keeney D. and Olson R. A. (1986). "Sources of nitrate to ground water." Critical Reviews in Environmental Control 16(3): 257-304.
Kellermann C. and Griebler C. (2009). "Thiobacillus thiophilus sp. Nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments." International Journal of Systematic and Evolutionary Microbiology 59(3): 583-588.
Kelly D. P., Rainey F. A. and Wood A. P. (2006). The genus paracoccus. The prokaryotes: Volume 5: Proteobacteria: Alpha and beta subclasses. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. New York, NY, Springer New York: 232-249.
Kumaraswamy R., Sjollema K., Kuenen G., Van Loosdrecht M. and Muyzer G. (2006). "Nitrate-dependent [Fe(II)EDTA]2− oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor." Systematic and Applied Microbiology 29(4): 276-286.
Liu K.-H. and Tsay Y.-F. (2003). "Switching between the two action modes of the dual-affinity nitrate transporter chl1 by phosphorylation." The EMBO journal 22(5): 1005-1013.
Manconi I., Carucci A. and Lens P. (2007). "Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system." Biotechnology and bioengineering 98(3): 551-560.
Matsui S. and Yamamoto R. (1986). "A new method of sulphur denitrification for sewage treatment by a fluidized bed reactor." Water Science and Technology 18(7-8): 355-362.
Mcmurry J. (2004). "Organic chemistry, 6 eds." Belmont, CA: Thompson Brooks/Cole: 136-138.
Milazzo G., Caroli S. and Braun R. D. (1978). "Tables of standard electrode potentials." Journal of The Electrochemical Society 125(6): 261C-261C.
Mora M., Guisasola A., Gamisans X. and Gabriel D. (2014). "Examining thiosulfate-driven autotrophic denitrification through respirometry." Chemosphere 113: 1-8.
Muehe E. M., Gerhardt S., Schink B. and Kappler A. (2009). "Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitratereducing bacteria." FEMS Microbiology Ecology 70(3): 335-343.
Ottley C., Davison W. and Edmunds W. (1997). "Chemical catalysis of nitrate reduction by iron (II)." Geochimica et Cosmochimica Acta 61(9): 1819-1828.
Pang Y. and Wang J. (2021). "Various electron donors for biological nitrate removal: A review." Science of The Total Environment 794: 148699.
Park J. Y. and Yoo Y. J. (2009). "Biological nitrate removal in industrial wastewater treatment: Which electron donor we can choose." Applied Microbiology and Biotechnology 82(3): 415-429.
Pfennig N. (1978). "Rhodocyclus purpureus gen. nov. And sp. nov., a ring-shaped, vitamin b12-requiring member of the family Rhodospirillaceae." International Journal of Systematic Bacteriology 28(2): 283-288.
Portmann R., Daniel J. and Ravishankara A. (2012). "Stratospheric ozone depletion due to nitrous oxide: Influences of other gases." Philosophical Transactions of the Royal Society B: Biological Sciences 367(1593): 1256-1264.
Prüsse U., Hähnlein M., Daum J. and Vorlop K.-D. (2000). "Improving the catalytic nitrate reduction." Catalysis Today 55(1-2): 79-90.
Ravishankara A. R., Daniel J. S. and Portmann R. W. (2009). "Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century." Science 326(5949): 123-125.
Reinhold-Hurek B. and Hurek T. (2006). "The genera Azoarcus, Azovibrio, Azospira and Azonexus." Prokaryotes 5: 873-891.
Rittmann B. E. and Mccarty P. L. (2001). Environmental biotechnology: Principles and applications, McGraw-Hill Education.
Shuval H. I. and Gruener N. (1972). "Epidemiological and toxicological aspects of nitrates and nitrites in the environment." American journal of public health 62(8): 1045-1052.
Smith R. L., Buckwalter S. P., Repert D. A. and Miller D. N. (2005). "Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water." Water Research 39(10): 2014-2023.
Sorokin D. Y., Gijs Kuenen J. and Jetten M. S. M. (2001). "Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD." Archives of Microbiology 175(2): 94-101.
Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A. and Kuenen G. J. (2001). "Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes." International Journal of Systematic and Evolutionary Microbiology 51(2): 565-580.
Sorokin D. Y., Tat′yana P. T., Tat′yana V. K., Sjollema K. A. and Kuenen J. G. (2002). "Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake." International Journal of Systematic and Evolutionary Microbiology 52(6): 2175-2182.
Sorokin D. Y., Tourova T., Apos, P. y., Antipov A. N., Muyzer G. and Kuenen J. G. (2004). "Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate." Microbiology 150(7): 2435-2442.
Sorokin D. Y., Tourova T., Apos, P. y., Sjollema K. A. and Kuenen J. G. (2003). "Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake." International Journal of Systematic and Evolutionary Microbiology 53(6): 1779-1783.
Sorokin D. Y., Tourova T. P., Bezsoudnova E. Y., Pol A. and Muyzer G. (2007). "Denitrification in a binary culture and thiocyanate metabolism in thiohalophilus thiocyanoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing gammaproteobacterium from hypersaline lakes." Archives of Microbiology 187(6): 441-450.
Sorokin D. Y., Tourova T. P., Braker G. and Muyzer G. (2007). "Thiohalomonas denitrificans gen. nov., sp. nov. and thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying gammaproteobacteria from hypersaline habitats." International Journal of Systematic and Evolutionary Microbiology 57(7): 1582-1589.
Sorokin D. Y., Tourova T. P., Galinski E. A., Muyzer G. and Kuenen J. G. (2008). "Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats." International Journal of Systematic and Evolutionary Microbiology 58(12): 2890-2897.
Steward B. (2006). "Reproducibility, distinguishability, and correlation of fireball and shockwave dynamics in explosive munitions detonations."
Straub K. L., Benz M., Schink B. and Widdel F. (1996). "Anaerobic, nitrate-dependent microbial oxidation of ferrous iron." Applied and Environmental Microbiology 62(4): 1458-1460.
Sun Y. and Nemati M. (2012). "Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters." Bioresource Technology 114: 207-216.
Szekeres S., Kiss I., Kalman M. and Soares M. I. M. (2002). "Microbial population in a hydrogen-dependent denitrification reactor." Water Research 36(16): 4088-4094.
Takai K., Suzuki M., Nakagawa S., Miyazaki M., Suzuki Y., Inagaki F. and Horikoshi K. (2006). "Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of thiomicrospira denitrificans as sulfurimonas denitrificans comb. Nov. And emended description of the genus sulfurimonas." International Journal of Systematic and Evolutionary Microbiology 56(8): 1725-1733.
Temelli B. and Unaleroglu C. (2014). "Direct transformation of primary nitro compounds into nitriles with sodium dithionite." Synthesis 46(10): 1407-1412.
Tibelius K. H. and Knowles R. (1984). "Uptake hydrogenase activity in denitrifying azospirillum brasilense grown anaerobically with nitrous oxide or nitrate." Journal of Bacteriology 157(1): 84-88.
Vairavamurthy A., Manowitz B., Luther G. W. and Jeon Y. (1993). "Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism." Geochimica et Cosmochimica Acta 57(7): 1619-1623.
Vishniac W. and Trudinger P. A. (1962). "V. Carbon dioxide fixation and substrate oxidation in the chemosynthetic sulfur and hydrogen bacteria." Bacteriological reviews 26.2_pt_1-2: 168-175.
Walton G. (1951). Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water, American Public Health Association.
Weber K. A., Pollock J., Cole K. A., O′connor S. M., Achenbach L. A. and Coates J. D. (2006). "Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002." Applied and Environmental Microbiology 72(1): 686-694.
White D. and Coville N. J. (1994). "Quantification of steric effects in organometallic chemistry." Advances in Organometallic Chemistry: 95.
Xie J. and Hase W. L. (2016). "Rethinking the sn2 reaction." Science 352(6281): 32-33.
Yang N., Zhang R., Xiang Z., Guo J. and Zhang L. (2013). "Study the optimal condition of fenpropathrin degradation by ochrobactrum anthropi based on bacteria microscopic image detection method." Advance Journal of Food Science and Technology 5(6): 688-694.
Ye R. W., Averill B. A. and Tiedje J. M. (1994). "Denitrification: Production and consumption of nitric oxide." Applied and Environmental Microbiology 60(4): 1053-1058.
Zablotowicz R. M., Eskew D. L. and Focht D. D. (1978). "Denitrification in rhizobium." Canadian Journal of Microbiology 24(6): 757-760.
Zhu I. and Getting T. (2012). "A review of nitrate reduction using inorganic materials." Environmental Technology Reviews 1(1): 46-58.
Zollinger H. (2003). Color chemistry: Syntheses, properties, and applications of organic dyes and pigments, John Wiley & Sons.
Zumft W. G. (1997). "Cell biology and molecular basis of denitrification." Microbiology and molecular biology reviews 61(4): 533-616.
指導教授 莊順興(Shun-Hsing Chuang) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明