博碩士論文 109383605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.139.97.233
姓名 陳德(Tran Duc)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 選擇性雷射熔化成型陶瓷TiN顆粒強化AISI 420不鏽鋼複合材料之加工參數優化及材料性能分析
(Optimization of Processing Parameters and Material Property Analysis for Selective Laser Melting of Ceramic TiN Particle-Reinforced AISI 420 Stainless Steel Composites)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 這項研究旨在透過選擇性雷射熔化(SLM)技術將陶瓷TiN顆粒混合入馬氏體不鏽鋼AISI 420基材中,以提高其機械性能和抗腐蝕性。此外,該研究還提供了有價值的見解,同時優化加工參數並詳細揭示晶體學分析,以製備優質金屬基複合材料。
為了實現上述目標,首要目標是實現TiN和AISI 420粉末的均勻混合,減輕TiN顆粒聚集的趨勢。因此,確定適當的混合方法對於減輕凝聚和污染是至關重要的,確保混合物適合SLM工藝。隨後,通過預打印單軌道測試來獲得高質量的SLM樣品,以確定最佳的線能量密度範圍,然後打印三維樣品,以評估不同加工參數、TiN含量(0 - 5重量百分比(wt.%)、TiN顆粒大小(20 µm、2 µm和20 nm)、以及後熱處理對最終品質的影響,包括物理、機械和化學性能。詳細檢查了材料-加工-微結構-性能之間的複雜關係。
此外,該研究提出了一種統計方法,以優化SLM TiN/AISI 420樣品的機械性能,採用整合方法包括Taguchi - Grey Relational Grade - Principle Component Analysis(Taguchi - GRA - PCA)。這有助於在多個響應變量上做出決策,特別是與表面粗糙度、相對密度和硬度等機械性能密切相關的參數。一個關鍵目標是預測SLM樣品的最佳強度性能。
因此,我們提出了一種新穎的兩階段混合方法,使用己烷或乙醇溶劑進行混合和振動。此方法確保了創建無污染的混合物,TiN均勻分散,避免凝聚,作為SLM工藝的理想原料。此外,確定了0.45至1.25 J/mm 範圍的線能量密度(LED)以獲得穩定的單軌道。在151至525 J/mm3 範圍內確定了體積能量密度(VED),以製備高密度的樣品。
向AISI 420基材中添加不同TiN含量表明對SLM TiN/AISI 420零件的微觀結構、機械性能和腐蝕性能產生不同影響。 TiN含量低於1 wt.% 表現出機械和腐蝕性能的改善。相反,超過1 wt.% 的TiN導致機械性能與基材相比下降。儘管如此,TiN存在於AISI 420基材中顯著提高了其腐蝕抗力。
熱處理過程降低了所有SLM TiN/AISI 420樣品的硬度,儘管與建造狀態相比,拉伸性能和腐蝕能力增加。使用Taguchi-GRA-PCA分析,確定了實現最佳機械性能的最佳加工參數:350 W 激光功率,370 mm/s 激光掃描速度,0.07 mm 孵化距離和0.05 mm 層厚,用於1 wt.% TiN/AISI 420複合粉末。
在微結構分析後,最佳TiN顆粒含量在SLM過程中表現出顆粒在晶界內均勻分散。將TiN顆粒納入AISI 420基材帶來了幾個優勢,作為加固相以加強基材,並形成一層被動膜以增強其耐腐蝕性。研究發現,含有1 wt.% TiN加固的SLM TiN/AISI 420樣品,在250 J/mm3 的VED下達到了745 ± 20 HV 的峰值硬度,超過了已建立的基準。抗拉強度達到1822 ± 21 MPa,伸長率為6.41 ± 0.40 %,最大韌性模量為99.7 ± 3.0 J/m3。
摘要(英) This study aims to enhance the mechanical properties and corrosion resistance of martensitic stainless steel AISI 420 matrix by incorporating Titanium Nitride (TiN) ceramic particles using the selective laser melting (SLM) technique. Furthermore, this investigation provides valuable insights into simultaneously optimizing processing parameters and revealing the crystallography analysis for superior metal matrix composites in detail.
To accomplish the above goals, the primary aim is to achieve a uniform blend of TiN and AISI 420 powder, mitigating the tendency of TiN particles to cluster together. Therefore, identifying an appropriate mixing method is crucial to alleviate agglomeration and contamination, ensuring a consistent mixture suitable for the SLM process. Subsequently, high-quality SLM samples are attained through pre-printing single-track tests to determine the optimal linear energy density range, followed by the printing of three-dimensional samples to assess the effects of various processing parameters, TiN content (0 – 5 in weight percent (wt. %)), TiN particle size (20 µm, 2 µm, and 20 nm), and post-heat treatment on the final quality, encompassing physical, mechanical, and chemical properties. The intricate relationship between Material–Processing–Microstructure–XRD, SEM, EDS, TEM, EBSD, XPS thoroughly examine property.
Moreover, the study proposes a statistical methodology to optimize the mechanical properties of SLM TiN/AISI 420 samples, employing an integrated approach incorporating Taguchi – Grey Relational Grade – Principle Component Analysis (Taguchi-GRA-PCA). This facilitates decision-making across multiple response variables, particularly on parameters closely associated with mechanical properties such as surface roughness, relative density, and hardness. A key objective is to forecast the optimal strength properties of the SLM sample.
Consequently, we proposed a novel two-stage hybrid mixing method using the blending and vibration in hexane or ethanol solvent. This method ensures the creation of a contaminant-free mixture with homogeneous dispersion of TiN, avoiding agglomeration, to serve as the ideal feedstock for the SLM process. In addition, the Linear Energy Density (LED) was determined in a range of 0.45 to 1.25 J/mm to achieve stable single tracks. The Volume Energy Density (VED) in the 151 to 525 J/mm3 range fabricated a high density of samples.
Various TiN content added into the AISI 420 matrix indicated the different effects on the microstructure, mechanical, and corrosion properties of the SLM TiN/AISI 420 parts. TiN content below 1 wt.% exhibited improvements in mechanical and corrosion resistance ability. Conversely, surpassing 1 wt. % of TiN led to a decline in mechanical properties compared to the base material. Nonetheless, the presence of TiN within the AISI 420 matrix significantly enhanced corrosion resistance.
The heat treatment process decreased the hardness of all SLM TiN/AISI 420 samples, although the tensile properties and corrosion ability increased compared to the as-built state. Using Taguchi-GRA-PCA analysis, optimal processing parameters for achieving the best mechanical properties were determined: laser power of 350W, a laser scanning speed of 370 mm/s, hatch distance of 0.07 mm, and layer thickness of 0.05 mm for 1 wt. % TiN/AISI 420 composites powders.
Following microstructure analysis, the optimal TiN particle content demonstrated even dispersion within the grain boundaries of AISI 420 during the SLM. Including TiN particles in the AISI 420 matrix offered several advantages, as a reinforced phase to fortify the matrix and forming a second passive film of TiN with the initial Cr2O3 film to augment corrosion resistance. The findings revealed SLM TiN/AISI 420 samples, with 1 wt.% TiN reinforcement, achieved a peak hardness of 745 ± 20 HV at a VED of 250 J/mm3, surpassing established benchmarks. Tensile strength reached 1822 ± 21 MPa, with an elongation of 6.41 ± 0.40% and a maximum modulus of toughness at 99.7 ± 3.0 J/m3. Upon subjecting the SLM TiN/AISI 420 samples to post-heat treatment, the toughness increased to 118.0 ± 1.3 J/m3. The optimal SLM TiN/AISI 420 samples exhibited corrosion rate values of 92.8 ± 1.1 mm/year in FeCl3 and 0.78 ± 0.01µm/year in NaCl 3.5%, outperforming those of SLM raw AISI 420.
Overall, this study presents a comprehensive approach to the effect of laser energy, content, and size of reinforced TiN powders and the post-heat treatment on the properties of SLM TiN/AISI 420 samples. It also proposes initial optimization processing parameters to enhance the mechanical properties and corrosion resistance of SLM TiN/AISI 420. The findings of this study offer valuable insights for developing advanced metal matrix composites for various industry applications.
關鍵字(中) ★ 焊接雷射融化
★ TiN/AISI 420
★ 綜合統計學
★ 機械性質
★ 耐腐蝕
★ 微結構
★ 強化
關鍵字(英) ★ Selective laser melting
★ TiN/AISI 420
★ Integrated statistic
★ Mechanical property
★ Corrosion resistance
★ Microstructure
★ Reinforcement
論文目次 TABLE OF CONTENTS
Pages
摘 要 ii
ABSTRACT iv
ACKNOWLEDGEMENT vii
TABLE OF CONTENTS ix
LIST OF FIGURES xiv
LIST OF TABLES xx
LIST OF ABBREVIATIONS xxiii
NOMENCLATURE xxvi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.1.1 History of Additive Manufacturing 1
1.1.2 Classify of AM 2
1.1.3 Powder bed fusion method 3
1.1.4 Selective laser melting technique 4
1.1.5 TiN ceramics and stainless steel 5
1.1.6 Statistics in optimal processing 7
1.2 Literature review 7
1.2.1 Selective laser melting metal matrix composites 7
1.2.2 Selective laser melting MMCs steel-based 10
1.2.3 Mixing powder 11
1.2.4 The SLM processing parameters optimization 13
1.2.5 The challenges of the SLM MMCs 14
1.3 Objective 15
1.4 Scientific findings 16
1.5 Thesis outlines 17
CHAPTER 2 EXPERIMENTAL PROCEDURE 19
2.1 Materials preparation, SLM procedure, and heat treatment process 20
2.1.1 Material precursor 20
2.1.2 Selective laser melting procedure 22
2.1.3 Heat treatment process 24
2.2 Physical measurement 25
2.2.1 Relative density 25
2.2.2 Surface roughness 26
2.3 Mechanical properties analysis 26
2.3.1 Hardness 26
2.3.2 Residual stress 26
2.3.3 Tensile strength 27
2.3.4 Toughness 28
2.4 Corrosion properties analysis 28
2.4.1 Open Circuit Potential 28
2.4.2 Weight loss test 29
2.5 Characterization method 30
2.5.1 Microstructure characterization 30
2.5.2 Phase composition analysis 30
2.5.3 Crystallography analysis 30
2.5.4 Nanostructure observation 31
2.5.5 Surface element analysis 31
CHAPTER 3 STATISTICAL METHOD 32
3.1 Design of Experiment 32
3.2 Taguchi method 32
3.3 Analysis of variance 33
3.4 Grey relational analysis 33
3.5 Principal component analysis 35
3.6 Optimal processing 37
3.7 Validation procedure 38
CHAPTER 4 RESULTS AND DISCUSSION 39
4.1 Powder analysis 39
4.2 Selective laser melted single-track analysis. 41
4.3 Selective laser melted bulk samples analysis. 45
4.3.1 Materials and SLM parameters impact on the SLM samples′ performance 45
4.3.2 Correlation of Relative Density and Surface Roughness 52
4.4 Phase composition and Microstructure analysis 54
4.4.1 Phase composition analysis. 54
4.4.2 Hierarchy of the SLM AISI 420 and TiN/AISI 420 57
4.4.3 SEM observation with various TiN content 62
4.4.4 Crystallographic analysis 65
4.5 Residual stress 73
4.6 The hardness investigation 74
4.6.1 The effect of VED 74
4.6.2 The effect of TiN content and heat treatment 76
4.6.3 The effect of TiN particle size 77
4.7 Tensile strength observation and analysis 78
4.7.1 The effect of VED 78
4.7.2 The effect of TiN content and heat treatment 80
4.7.3 The effect of TiN particle size 83
4.8 Corrosion resistance investigation 86
4.8.1 Immerse in FeCl3 86
4.8.2 Electrochemical performance in seawater 93
4.9 Optimization by an integrated Taguchi-GRA-PCA method 97
4.9.1 Single-response optimization (SRO) using Taguchi method 98
4.9.2 Multi-response optimization using hybrid Taguchi-GRA-PCA method 101
4.10 Microstructure, mechanical and corrosion behavior relationship 106
4.10.1 Microstructure analysis 106
4.10.2 Mechanical properties 108
4.10.3 Corrosion resistance ability 110
4.10.4 Strengthening mechanism 111
4.10.5 Corrosive mechanism 113
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 115
5.1 Conclusions 115
5.2 Future works 118
REFERENCES 120
PUBLICATIONS 131
BIBLIOGRAPHY 132
APPENDIX A – Measurement tester and equipment used in this study 133
APPENDIX B – Surface roughness and relative density measurement 134
APPENDIX C – Hardness measurement 136
APPENDIX D – Tensile strength results 138
APPENDIX E – Corrosion data 141
APPENDIX F – The optimal sample data 144
參考文獻 REFERENCES
[1] E. Pei et al., Springer Handbook of Additive Manufacturing, Springer Nature, 2023.
[2] O. J. Munz, "Photo-glyph recording", USA Patent 228,180, 1956. Available: https://patents.google.com/patent/US2775758A/en.
[3] P. L. DiMatteo, "Method of generating and constructing three-dimensional bodies", USA, 1976. Available: https://patents.google.com/patent/US3932923A/en.
[4] W. K. Swainson, "Method, medium and apparatus for producing three-dimensional figure product", USA, 1977. Available: https://patents.google.com/patent/US4041476A/en.
[5] "Molding process", USA, 1981. Available: https://patents.google.com/patent/US4247508B1/en.
[6] R. F. Housholder, "Molding process", 1981. Available: https://patents.google.com/patent/US4247508B1/en.
[7] C. W. Hull, "Apparatus for production of three-dimensional objects by stereolithography", USA, 1984.
[8] C. R. Deckard, Selective laser sintering, The University of Texas at Austin, 1988.
[9] S. S. Crump, J. W. Comb, W. R. Priedeman Jr, and R. L. Zinniel, "Process of support removal for fused deposition modeling", USA, 1996.
[10] A. Gebhardt and J.-S. Hötter, Additive manufacturing: 3D printing for prototyping and manufacturing, Hanser Publisher, Munich 2016.
[11] Additive manufacturing - General principles - Teminology, ISO/ASTM 52900:2017, 2016
[12] A. Haleem and e. al., "Additive manufacturing applications in industry 4.0: a review", Journal of Industrial Intergration and Management, Vol. 4(04), pp. 1930001, 2019.
[13] Additive manufacturing trend report. Available: https://www.hubs.com/get/trends/. .(30 Nov, 2023).
[14] M. Brandt, Laser additive manufacturing: materials, design, technologies, and applications, Elsivier: Edinbugh, UK 2016.
[15] S. Dadbakhsh, R. Mertens, L. Hao, J. Van Humbeeck, and J. P. Kruth, "Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review", Advanced Engineering Materials, Vol. 21(3)2019. DOI: https://10.1002/adem.201801244.
[16] W. E. Frazier, "Metal additive manufacturing: a review", Journal of Materials Engineering performance, Vol. 23(1), pp. 1917-1928, Jun 2014.
[17] W. H. Yu, S. L. Sing, C. K. Chua, C. N. Kuo, and X. L. Tian, "Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review", Progress in Materials Science, Vol. 104(3), pp. 330-379, Mar 2019. DOI: https://10.1016/j.pmatsci.2019.04.006.
[18] A. Vafadar, F. Guzzomi, A. Rassau, and K. Hayward, "Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges", Applied Sciences, Vol. 11(3)Jan 2021. DOI: http://10.3390/app11031213.
[19] T. DebRoy et al., "Additive manufacturing of metallic components – Process, structure and properties", Progress in Materials Science, Vol. 92, pp. 112-224, Mar 2018. DOI: https://10.1016/j.pmatsci.2017.10.001.
[20] C. Gao, Z. Liu, Z. Xiao, W. Zhang, K. Wong, and A. H. Akbarzadeh, "Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: Microstructural evolution and mechanical properties", Journal of Alloys and Compounds, Vol. 853, pp. 156722, Feb 2021. DOI: 10.1016/j.jallcom.2020.156722.
[21] D. Tanprayoon, S. Srisawadi, Y. Sato, M. Tsukamoto, and T. Suga, "Microstructure and hardness response of novel 316L stainless steel composite with TiN addition fabricated by SLM", Optics & Laser Technology, Vol. 129Sep 2020. DOI: 10.1016/j.optlastec.2020.106238.
[22] B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, and F. Xuan, "Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects", Powder Technology, Vol. 360, pp. 509-521, Jan 2020. DOI: https://10.1016/j.powtec.2019.10.068.
[23] A. Ozsoy, E. Aydogan, and A. F. Dericioglu, "Selective laser melting of Nano-TiN reinforced 17-4 PH stainless steel: Densification, microstructure and mechanical properties", Materials Science and Engineering: A, Vol. 8362022. DOI: http://10.1016/j.msea.2021.142574.
[24] Z. Duriagina, Stainless Steels and Alloys, IntechOpen, 2019.
[25] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E. A. Jägle, "Steels in additive manufacturing: A review of their microstructure and properties", Materials Science and Engineering: A, Vol. 7722020. DOI: https://10.1016/j.msea.2019.138633.
[26] K. H. Lo, C. H. Shek, and J. K. L. Lai, "Recent developments in stainless steels", Materials Science and Engineering: R: Reports, Vol. 65(4-6), pp. 39-104, 2009. DOI: https://10.1016/j.mser.2009.03.001.
[27] Outokumpu, Handbook of Stainless Steel, Avesta Research Centre, Sweden 2013.
[28] Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM Handbook, 1990.
[29] J. C. Lippold and D. J. Kotecki, Welding metallurgy and weldability of stainless steels, 2005.
[30] S. Q. Jia and F. Yang, "High thermal conductive copper/diamond composites: state of the art", Journal of Materials Science, Vol. 56(3), pp. 2241-2274, 2020. DOI: https://10.1007/s10853-020-05443-3.
[31] C. Gao, W. Wu, J. Shi, Z. Xiao, and A. H. Akbarzadeh, "Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting", Additive Manufacturing, Vol. 34, pp. 101378, Aug 2020. DOI: https://10.1016/j.addma.2020.101378.
[32] A. N. Bakhtiyari, Y. Wu, L. Wang, Z. Wang, and H. Zheng, "Laser machining sapphire via Si-sapphire interface absorption and process optimization using an integrated approach of the Taguchi method with grey relational analysis", Journal of Materials Research and Technology, Vol. 24, pp. 663-674, May 2023. DOI: https://10.1016/j.jmrt.2023.02.218.
[33] E. Messele and A. A. Tsegaw, Advanced and multivariate statistical methods: Practical application and interpretation, Routledge, 2021.
[34] A. H. Elsheikh, T. A. Shehabeldeen, J. Zhou, E. Showaib, and M. Elaziz, "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer", Journal of Intelligent Manufacturing, Vol. 32, pp. 1377-1388, Jun 2021.
[35] A. N. Mustapha, Y. Zhang, Z. Zhang, Y. Ding, Q. Yuan, and Y. Li, "Taguchi and ANOVA analysis for the optimization of the microencapsulation of a volatile phase change material", Journal of Materials Research and Technology, Vol. 11, pp. 667-680, Mar 2021. DOI: 10.1016/j.jmrt.2021.01.025.
[36] S. Kumar and A. Singh, "Multi-objective Optimization of Green Drilling Parameters on HcHcr Steel Using GRA-TOPSIS with PCA Method," in Recent Trends in Mechanical Engineering: Select Proceedings of PRIME 2021: Springer, 2023, pp. 13-23.
[37] S. Bellubbi, S. N, and B. Mallick, "Multi response optimization of ECDM process parameters for machining of microchannel in silica glass using Taguchi–GRA technique", Silicon, Vol. 14(8), pp. 4249-4263, 2022.
[38] A. Saha and H. Majumder, "Multi-attribute optimisation of submerged arc welding process parameters using Taguchi GRA-PCA hybrid approach", Australian Journal of Mechanical Engineering, Vol. 20(5), pp. 1207-1212, Oct 2022.
[39] E. M. Sefene and A. A. Tsegaw, "Temperature-based optimization of friction stir welding of AA 6061 using GRA synchronous with Taguchi method", The International Journal of Advanced Manufacturing Technology, pp. 1-12, 2022.
[40] N. K. S. Singhal, "Optimization of wear properties in aluminum metal matrix composites using hybrid Taguchi-GRA-PCA", International Journal of Performability Engineering, Vol. 14(5), pp. 857, May 2018.
[41] E. Liverani and A. Fortunato, "Additive manufacturing of AISI 420 stainless steel: process validation, defect analysis and mechanical characterization in different process and post-process conditions", The International Journal of Advanced Manufacturing Technology, Vol. 117(3-4), pp. 809-821, 2021. DOI: https://10.1007/s00170-021-07639-6.
[42] B. Song, S. Wen, C. Yan, Q. Wei, and Y. Shi, Selective Laser Melting for Metal and Metal Matrix Composites, Academic Press, 2020.
[43] C. Gao, Z. Wang, Z. Xiao, D. You, K. Wong, and A. H. Akbarzadeh, "Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties", Journal of Materials Processing Technology, Vol. 2812020. DOI: https://10.1016/j.jmatprotec.2020.116618.
[44] L. Lu, J. Fuh, Z. Chen, C. Leong, and Y. Wong, "In situ formation of TiC composite using selective laser melting", Materials Research Bulletin, Vol. 35(9), pp. 1555-1561, 2000.
[45] D. Gu, Y. Shen, and G. Meng, "Growth morphologies and mechanisms of TiC grains during Selective Laser Melting of Ti–Al–C composite powder", Materials Letters, Vol. 63(29), pp. 2536-2538, Dec 2009. DOI: 10.1016/j.matlet.2009.08.043.
[46] S. Dadbakhsh and L. Hao, "Effect of Fe 2 O 3 content on microstructure of Al powder consolidated parts via selective laser melting using various laser powers and speeds", The International Journal of Advanced Manufacturing Technology, Vol. 73, pp. 1453-1463, Jun 2014.
[47] H. Attar et al., "Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies", Journal of Materials Research, Vol. 29(17), pp. 1941-1950, 2014. DOI: 10.1557/jmr.2014.122.
[48] S. Dadbakhsh, R. Mertens, K. Vanmeensel, G. Ji, and J. P. Kruth, "In situ transformations during SLM of an ultra-strong TiC reinforced Ti composite", Scientific Report, Vol. 10(1), pp. 10523, Jun 29 2020. DOI: https://10.1038/s41598-020-67434-3.
[49] J. Yi, X. Zhang, J. H. Rao, J. Xiao, and Y. Jiang, "In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2+ TiC)/AlSi10Mg composites prepared by SLM-CS processing", Journal of Alloys Compounds, Vol. 857, pp. 157553, Mar 2021.
[50] B. Song, S. Dong, and C. Coddet, "Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC", Scripta Materialia, Vol. 75, pp. 90-93, Mar 2014.
[51] H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y.-J. Kim, "Lasers in additive manufacturing: A review", International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4(3), pp. 307-322, Jun 2017. DOI: 10.1007/s40684-017-0037-7.
[52] X. Li, H. J. Willy, S. Chang, W. Lu, T. S. Herng, and J. Ding, "Selective laser melting of stainless steel and alumina composite: Experimental and simulation studies on processing parameters, microstructure and mechanical properties", Materials & Design, Vol. 145, pp. 1-10, May 2018.
[53] C. Gao, Z. Xiao, Z. Liu, Q. Zhu, and W. Zhang, "Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity", Materials Letters, Vol. 236, pp. 362-365, Feb 2019. DOI: https://10.1016/j.matlet.2018.10.126.
[54] H. Li, Z. Yang, D. Cai, D. Jia, and Y. Zhou, "Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions", Materials & Design, Vol. 185, pp. 108245, Jan 2020. DOI: https://10.1016/j.matdes.2019.108245.
[55] V. Mandal, P. Tripathi, A. Kumar, S. S. Singh, and J. Ramkumar, "A study on selective laser melting (SLM) of TiC and B4C reinforced IN718 metal matrix composites (MMCs)", Journal of Alloys Compounds, Vol. 901, pp. 163527, Apr. 2022.
[56] S. Tjong and Z. Ma, "Microstructural and mechanical characteristics of in situ metal matrix composites", Materials Science Engineering: R: Reports, Vol. 29(3-4), pp. 49-113, Aug 2000.
[57] T. Fan, D. Zhang, G. Yang, T. Shibayanagi, and M. Naka, "Fabrication of in situ Al2O3/Al composite via remelting", Journal of Materials Processing Technology, Vol. 142(2), pp. 556-561, Nov 2003.
[58] A.-M. Bandar, "Powder metallurgy of stainless steel: state-of-the art, challenges, and development," in Stainless steel, A. P. a. A. K. Basak, Ed., 2019, p. 37.
[59] L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, "Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development", Journal of materials processing technology, Vol. 209(17), pp. 5793-5801, Aug 2009.
[60] B. AlMangour, D. Grzesiak, T. Borkar, and J.-M. Yang, "Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting", Materials & Design, Vol. 138, pp. 119-128, Jan 2018. DOI: 10.1016/j.matdes.2017.10.039.
[61] O. Salman et al., "Selective laser melting of 316L stainless steel: Influence of TiB2 addition on microstructure and mechanical properties", Materials Today Communications, Vol. 21, pp. 100615, Dec 2019.
[62] H. Hu et al., "Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2", Optics & Laser Technology, Vol. 119Nov 2019. DOI: https://10.1016/j.optlastec.2019.105588.
[63] X. Zhao, Q. S. Wei, N. Gao, E. L. Zheng, Y. S. Shi, and S. F. Yang, "Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing", Journal of Materials Processing Technology, Vol. 270, pp. 8-19, Aug 2019. DOI: https://10.1016/j.jmatprotec.2019.01.028.
[64] Y. Liu, M. Tang, Q. Hu, Y. Zhang, and L. Zhang, "Densification behavior, microstructural evolution, and mechanical properties of TiC/AISI420 stainless steel composites fabricated by selective laser melting", Materials & Design, Vol. 187Feb 2020. DOI: 10.1016/j.matdes.2019.108381.
[65] H. Wang and D. Gu, "Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting", Journal of Composite Materials, Vol. 49(13), pp. 1639-1651, Jun 2014. DOI: 10.1177/0021998314538870.
[66] B. AlMangour, D. Grzesiak, and J.-M. Yang, "Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment", Powder Technology, Vol. 309, pp. 37-48, Mar 2017. DOI: 10.1016/j.powtec.2016.12.073.
[67] S. Dadbakhsh and L. Hao, "Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites", Journal of alloys compounds, Vol. 541, pp. 328-334, Nov 2012.
[68] X. P. Li et al., "Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility", Acta Materialia, Vol. 129, pp. 183-193, May 2017. DOI: 10.1016/j.actamat.2017.02.062.
[69] W. Zhou, X. Sun, K. Kikuchi, N. Nomura, K. Yoshimi, and A. Kawasaki, "Carbon nanotubes as a unique agent to fabricate nanoceramic/metal composite powders for additive manufacturing", Materials & Design, Vol. 137, pp. 276-285, Jan 2018. DOI: 10.1016/j.matdes.2017.10.034.
[70] H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, and A. T. Clare, "Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders", Materials Letters, Vol. 214, pp. 123-126, Mar 2018.
[71] C. Ma, L. Chen, C. Cao, and X. Li, "Nanoparticle-induced unusual melting and solidification behaviours of metals", Nature Communications, Vol. 8, pp. 14178, Jan 2017. DOI: 10.1038/ncomms14178.
[72] H. Kyogoku and T.-T. Ikeshoji, "A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process", Mechanical Engineering Reviews, Vol. 7(1), pp. 19-00182, 2020. DOI: http://10.1299/mer.19-00182.
[73] C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks, and M. M. Attallah, "On the role of melt flow into the surface structure and porosity development during selective laser melting", Acta Materialia, Vol. 96, pp. 72-79, Sep 2015. DOI: https://doi.org/10.1016/j.actamat.2015.06.004.
[74] A. M. Rausch, M. Markl, and C. Körner, "Predictive simulation of process windows for powder bed fusion additive manufacturing: Influence of the powder size distribution", Computers & Mathematics with Applications, Vol. 78(7), pp. 2351-2359, Oct 2019. DOI: https://doi.org/10.1016/j.camwa.2018.06.029.
[75] E. Maleki, S. Bagherifard, and M. Guagliano, "Application of artificial intelligence to optimize the process parameters effects on tensile properties of Ti-6Al-4V fabricated by laser powder-bed fusion", International Journal of Mechanics Materials in Design, pp. 1-24, Dec 2021.
[76] S. Theeda, S. H. Jagdale, B. B. Ravichander, and G. Kumar, "Optimization of Process Parameters in Laser Powder Bed Fusion of SS 316L Parts Using Artificial Neural Networks", Metals, Vol. 13(5)Apr 2023. DOI: https://10.3390/met13050842.
[77] C. A. Mertler, R. A. Vannatta, and K. N. LaVenia, Advanced and multivariate statistical methods: Practical application and interpretation, Routledge, 2021.
[78] H. Kyogoku and T.-T. Ikeshoji, "A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process", Mechanical Engineering Reviews, Vol. 7(1), pp. 19-00182-19-00182, 2020. DOI: https://10.1299/mer.19-00182.
[79] A. W. Nienow, M. F. EDWARDS, and N. Harnby, Mixing in the process industries, Butterworth-Heinemann, 1997.
[80] Standard Test Methods for Tension Testing of Metallic Materials, ATSM E8/E8M standard, last updated Jul 2022. DOI: http://10.1520/E0008_E0008M-22.
[81] N. Bastola, M. P. Jahan, N. Rangasamy, and C. S. Rakurty, "A Review of the Residual Stress Generation in Metal Additive Manufacturing: Analysis of Cause, Measurement, Effects, and Prevention", Micromachines (Basel), Vol. 14(7)Jul 2023. DOI: https://10.3390/mi14071480.
[82] M. Gel′atko et al., "Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process", Materials (Basel), Vol. 16(19)Sep 2023. DOI: 10.3390/ma16196461.
[83] Standard Test Method for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle: ASTM B962, ASTM International: West Conshohocken, PA, USA, 2017
[84] S. D. Nath, H. Irrinki, G. Gupta, M. Kearns, O. Gulsoy, and S. Atre, "Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion", Powder Technology, Vol. 343, pp. 738-746, Feb 2019. DOI: https://10.1016/j.powtec.2018.11.075.
[85] D. Tran et al., "Enhancing Mechanical and Corrosion Properties of AISI 420 with Titanium-Nitride Reinforcement through High-Power-Density Selective Laser Melting Using Two-Stage Mixed TiN/AISI 420 Powder", Materials (Basel), Vol. 16(11)Jun 2023. DOI: https://10.3390/ma16114198.
[86] ISO 6507-1:2023, https://www.iso.org/obp/ui/fr/#iso:std:iso:6507:-1:ed-5:v1:en, 2023
[87] P. S. J. A. I. Prevéy, ASM Handbook., "X-ray diffraction residual stress techniques", Vol. 10, pp. 380-392, 1986.
[88] W. Soboyejo, Mechanical properties of engineered materials, CRC press, 2002.
[89] J. R. Kearns, D. A. Eden, M. R. Yaffe, J. V. Fahey, D. L. Reichert, and D. C. Silverman, "ASTM standardization of electrochemical noise measurement", Vol. 1277, pp. 446-470, 1996.
[90] C. P. Ukpaka, "Modeling the rate of biocorrosion and the effects of redox-reactions of metals in water environment", Journal of Engineering and Technology Research, Vol. 3(13), pp. 371-380, Dec 2011. DOI: 10.5897/jetr11.058.
[91] K. Saeidi et al., "Ultra-high strength martensitic 420 stainless steel with high ductility", Additive Manufacturing, Vol. 29, pp. 100803, Jan 2019. DOI: https://doi.org/10.1016/j.addma.2019.100803.
[92] C. Cayron, "EBSD imaging of orientation relationships and variant groupings in different martensitic alloys and Widmanstätten iron meteorites", Materials characterization, Vol. 94, pp. 93-110, 2014.
[93] T.-A. Pan, Y.-J. Lian, Y.-C. Tzeng, H.-Y. Bor, and S.-L. Lee, "Effects of Trace Ag and Heat Treatment on the Mechanical Properties and Corrosion Resistance of Al-Zn-Mg-Cu Alloys", Jom, Vol. 74(10), pp. 3877-3886, 2022. DOI: https://10.1007/s11837-022-05416-8.
[94] S. N. Hedayat AS, Stufken J., Orthogonal arrays: theory and applications, Springer Science & Business Media, 1999.
[95] M. Ning, S. Mengjie, C. Mingyin, P. Dongmei, and D. Shiming, "Computational fluid dynamics (CFD) modelling of air flow field, mean age of air and CO2 distributions inside a bedroom with different heights of conditioned air supply outlet", Applied Energy, Vol. 164, pp. 906-915, Feb 2016. DOI: 10.1016/j.apenergy.2015.10.096.
[96] B. E. Yuce, P. V. Nielsen, and P. Wargocki, "The use of Taguchi, ANOVA, and GRA methods to optimize CFD analyses of ventilation performance in buildings", Building and Environment, Vol. 2252022. DOI: 10.1016/j.buildenv.2022.109587.
[97] H. Y. Kim, "Analysis of variance (ANOVA) comparing means of more than two groups", Restor Dent Endod, Vol. 39(1), pp. 74-7, Feb 2014. DOI: 10.5395/rde.2014.39.1.74.
[98] M. Zheng et al., "On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy", Journal of Materials Research and Technology, Vol. 11, pp. 392-403, Mar 2021. DOI: 10.1016/j.jmrt.2021.01.024.
[99] W. J. Lee, G. P. Mendis, M. J. Triebe, and J. W. Sutherland, "Monitoring of a machining process using kernel principal component analysis and kernel density estimation", Journal of Intelligent Manufacturing, Vol. 31(5), pp. 1175-1189, Jun 2020. DOI: 10.1007/s10845-019-01504-w.
[100] S. Greco, K. Gutzeit, H. Hotz, B. Kirsch, and J. C. Aurich, "Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density", The International Journal of Advanced Manufacturing Technology, Vol. 108(5-6), pp. 1551-1562, May 2020. DOI: https://10.1007/s00170-020-05510-8.
[101] H.-Y. Kim, "Analysis of variance (ANOVA) comparing means of more than two groups", Restorative dentistry endodontics, Vol. 39(1), pp. 74-77, 2014.
[102] D. H. Johnson, "Signal-to-noise ratio", Scholarpedia Vol. 1(12), pp. 2088, 2006.
[103] A. Freddi and M. Salmon, "Introduction to the Taguchi Method," in Design Principles and Methodologies, A. Freddi and M. Salmon, Eds. Cham: Springer International Publishing, 2019, pp. 159-180.
[104] H. Chen, D. Gu, D. Dai, C. Ma, and M. Xia, "Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts", Materials Science and Engineering: A, Vol. 682, pp. 279-289, Jan 2017. DOI: 10.1016/j.msea.2016.11.047.
[105] D. R. Lide, CRC handbook of chemistry and physics, CRC press, 2004.
[106] D. Wei, R. Dave, and R. Pfeffer, "Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques", Journal of Nanoparticle Research, Vol. 4(1), pp. 21-41, Apr 2002. DOI: 10.1023/A:1020184524538.
[107] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N. M. Everitt, "On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties", Journal of Materials Processing Technology, Vol. 230, pp. 88-98, Apr 2016. DOI: https://10.1016/j.jmatprotec.2015.11.016.
[108] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov, "Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder", Journal of Materials Processing Technology, Vol. 213(4), pp. 606-613, Apr 2013.
[109] A. K. Agrawal and D. J. Thoma, "High-throughput surface characterization to identify porosity defects in additively manufactured 316L stainless steel", Additive Manufacturing Letters, Vol. 3Dec 2022. DOI: 10.1016/j.addlet.2022.100093.
[110] C. Zhang, Q. Liao, X. Zhang, F. Ma, M. Wu, and Q. Xu, "Characterization of porosity in lack of fusion pores in selective laser melting using the wavefunction", Materials Research Express, Vol. 10(1)2023. DOI: https://10.1088/2053-1591/acaf24.
[111] B. Zhang, Y. Li, and Q. Bai, "Defect Formation Mechanisms in Selective Laser Melting: A Review", Chinese Journal of Mechanical Engineering, Vol. 30(3), pp. 515-527, 2017. DOI: 10.1007/s10033-017-0121-5.
[112] X. Li, Y. Liu, C. Tan, and Y. Zou, "Porosity formation mechanisms, microstructure evolution and mechanical performance of AlMgScZr alloy fabricated by laser powder bed fusion: Effect of hatch distance", Journal of Manufacturing Processes, Vol. 94, pp. 107-119, May 2023. DOI: https://doi.org/10.1016/j.jmapro.2023.03.047.
[113] K. Arafune and A. Hirata, "Thermal and solutal Marangoni convection in In–Ga–Sb system", Journal of Crystal Growth, Vol. 197(4), pp. 811-817, Mar 1999. DOI: https://doi.org/10.1016/S0022-0248(98)01071-9.
[114] N. Takata, R. Nishida, A. Suzuki, M. Kobashi, and M. Kato, "Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting", Metals, Vol. 8(6), pp. 440-448, Jun 2018. DOI: 10.3390/met8060440.
[115] C.-M. Jiang, J.-R. Ho, P.-C. Tung, and C.-K. Lin, "Tempering Effect on the Anisotropic Mechanical Properties of Selective Laser Melted 420 Stainless Steel", Journal of Materials Engineering and Performance, Vol. 32(11), pp. 5082-5096, 2022. DOI: https://10.1007/s11665-022-07450-8.
[116] Y. Tian, K. Chadha, and C. Aranas, "Laser powder bed fusion of ultra-high-strength 420 stainless steel: Microstructure characterization, texture evolution and mechanical properties", Materials Science and Engineering: A, Vol. 805Feb 2021. DOI: 10.1016/j.msea.2021.140790.
[117] L. Y. Chen et al., "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles", Nature, Vol. 528(7583), pp. 539-43, Dec 2015. DOI: http://10.1038/nature16445.
[118] Steels : heat treatment and processing principles, ASM International.
[119] H. Gong, K. Rafi, H. Gu, G. D. Janaki Ram, T. Starr, and B. Stucker, "Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting", Materials & Design, Vol. 86, pp. 545-554, 2015. DOI: 10.1016/j.matdes.2015.07.147.
[120] W. Chen, B. Xiao, L. Xu, Y. Han, L. Zhao, and H. Jing, "Additive manufacturing of martensitic stainless steel matrix composites with simultaneously enhanced strength-ductility and corrosion resistance", Composites Part B: Engineering, Vol. 234, pp. 109745, Apr 2022. DOI: https://10.1016/j.compositesb.2022.109745.
[121] H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, "Crystallographic features of lath martensite in low-carbon steel", Acta Materialia, Vol. 54(5), pp. 1279-1288, Mar 2006. DOI: https://doi.org/10.1016/j.actamat.2005.11.001.
[122] T. Swarr and G. Krauss, "The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy", Metallurgical Transactions A, Vol. 7(1), pp. 41-48, Dec 1976. DOI: https://10.1007/BF02644037.
[123] I. Serrano-Munoz, R. Fernández, R. Saliwan-Neumann, G. González-Doncel, and G. Bruno, "Dislocation structures after creep in an Al-3.85 %Mg alloy studied using EBSD-KAM technique", Materials Letters, Vol. 337, pp. 133978, Apr 2023. DOI: https://doi.org/10.1016/j.matlet.2023.133978.
[124] B. AlMangour, D. Grzesiak, and M. Jenn, "Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content", Materials & Design, Vol. 104, pp. 141-151, Aug 2016. DOI: https://10.1016/j.matdes.2016.05.018.
[125] P. F. Jiang, C. H. Zhang, S. Zhang, J. B. Zhang, J. Chen, and H. T. Chen, "Additive manufacturing of novel ferritic stainless steel by selective laser melting: Role of laser scanning speed on the formability, microstructure and properties", Optics & Laser Technology, Vol. 140, pp. 107055, Aug 2021. DOI: https://doi.org/10.1016/j.optlastec.2021.107055.
[126] G. Krauss, Steels: heat treatment and processing principles., Materials Park, Ohio : ASM International, 1989.
[127] Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, "Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting", Journal of Nuclear Materials, Vol. 470, pp. 170-178, 2016. DOI: http://10.1016/j.jnucmat.2015.12.034.
[128] W.-S. Shin et al., "Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting", Materials Science and Engineering: A, Vol. 8062021. DOI: http://10.1016/j.msea.2021.140805.
[129] X. Zhao et al., "Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting", Materials and Manufacturing Processes, Vol. 30(11), pp. 1283-1289, 2015. DOI: 10.1080/10426914.2015.1026351.
[130] J. I. Ahuir-Torres, G. J. Gibbons, G. West, A. Das, and H. R. Kotadia, "Understanding the corrosion behaviour of Al-Mg alloy fabricated using a Laser Powder Bed Fusion (L-PBF) Additive Manufacturing (AM) process", Journal of Alloys and Compounds, Vol. 969, pp. 172300, Dec 2023. DOI: https://10.1016/j.jallcom.2023.172300.
[131] Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, Springer, 2006.
[132] A. Pfennig and A. Kranzmann, "Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach", Clean Technologies, Vol. 4(2), pp. 239-257, Mar 2022. DOI: http://10.3390/cleantechnol4020014.
[133] Y. Zhao, C. Wu, S. Zhou, J. Yang, W. Li, and L.-C. Zhang, "Selective laser melting of Ti-TiN composites: Formation mechanism and corrosion behaviour in H2SO4/HCl mixed solution", Journal of Alloys and Compounds, Vol. 863, pp. 158721, May 2021. DOI: http://10.1016/j.jallcom.2021.158721.
[134] B. J. Tan, K. J. Klabunde, and P. M. A. Sherwood, "X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina", Chemistry of Materials, Vol. 2(2), pp. 186-191, Mar 1990. DOI: 10.1021/cm00008a021.
[135] J. C. Langevoort, I. Sutherland, L. J. Hanekamp, and P. J. Gellings, "On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS", Applied Surface Science, Vol. 28(2), pp. 167-179, Apr 1987. DOI: https://doi.org/10.1016/0169-4332(87)90062-6.
[136] M. Oku and K. Hirokawa, "X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds", Journal of Electron Spectroscopy and Related Phenomena, Vol. 8(5), pp. 475-481, Jan 1976. DOI: https://doi.org/10.1016/0368-2048(76)80034-5.
[137] E. Paparazzo, "XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3", Journal of Electron Spectroscopy and Related Phenomena, Vol. 43(2), pp. 97-112, Jan 1987. DOI: https://doi.org/10.1016/0368-2048(87)80022-1.
[138] M. Kawamura, Y. Abe, H. Yanagisawa, and K. Sasaki, "Characterization of TiN films prepared by a conventional magnetron sputtering system: influence of nitrogen flow percentage and electrical properties", Thin Solid Films, Vol. 287(1), pp. 115-119, Oct 1996. DOI: https://doi.org/10.1016/S0040-6090(96)08749-4.
[139] J. Sander, J. Hufenbach, L. Giebeler, M. Bleckmann, J. Eckert, and U. Kühn, "Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting", Scripta Materialia, Vol. 126, pp. 41-44, Jan 2016. DOI: http://10.1016/j.scriptamat.2016.07.029.
[140] A. Shahriari et al., "Corrosion resistance of 13wt.% Cr martensitic stainless steels: Additively manufactured CX versus wrought Ni-containing AISI 420", Corrosion Science, Vol. 184, pp. 109362, May 2021. DOI: https://doi.org/10.1016/j.corsci.2021.109362.
[141] B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, "Determination of effective capacitance and film thickness from constant-phase-element parameters", Electrochimica Acta, Vol. 55(21), pp. 6218-6227, 2010. DOI: https://10.1016/j.electacta.2009.10.065.
[142] S. Marcelin, N. Pébère, and S. Régnier, "Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution", Electrochimica Acta, Vol. 87, pp. 32-40, Jan 2013. DOI: 10.1016/j.electacta.2012.09.011.
[143] L. Wang et al., "The effect of ɳ-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich Custom 465 steel", Corrosion Science, Vol. 154, pp. 178-190, Jul 2019. DOI: https://doi.org/10.1016/j.corsci.2019.04.016.
[144] H. Irani and M. Shaban Ghazani, "Effect of grain refinement on tensile properties and electrochemical behavior of Fe-18.5%Cr ferritic stainless steel", Materials Chemistry and Physics, Vol. 2512020. DOI: https://doi.org/10.1016/j.matchemphys.2020.123089.
[145] D. Tran, C.-K. Lin, P.-C. Tung, J.-R. Ho, and T.-L. Le, "Enhancing mechanical properties of selective-laser-melting TiN/AISI 420 composites through Taguchi GRA and PCA multi-response optimization", Journal of Materials Research and Technology, Vol. 29, pp. 1278-1292, Mar 2024. DOI: https://doi.org/10.1016/j.jmrt.2024.01.174.
[146] X. H. Yang, C. M. Jiang, J. R. Ho, P. C. Tung, and C. K. Lin, "Effects of Laser Spot Size on the Mechanical Properties of AISI 420 Stainless Steel Fabricated by Selective Laser Melting", Materials (Basel), Vol. 14(16)Aug 2021. DOI: https://10.3390/ma14164593.
[147] S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, N. Chen, and X.-Y. Ge, "Effect of quenching and partitioning on the microstructure evolution and electrochemical properties of a martensitic stainless steel", Corrosion Science, Vol. 103, pp. 95-104, 2016. DOI: 10.1016/j.corsci.2015.11.010.
[148] A. Sanaty-Zadeh, "Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect", Materials Science and Engineering: A, Vol. 531, pp. 112-118, Jan 2012. DOI: https://doi.org/10.1016/j.msea.2011.10.043.
[149] P. F. Handoko W, Sahajwalla V, "Effect of retained austenite stability in corrosion mechanism of dual phase high carbon steel", International Journal of Materials and Metallurgical Engineering, Vol. 12(1), pp. 1-5, Nov 2017.
[150] Available: https://www.ispatguru.com/basic-concepts-of-corrosion-of-iron-and-steel/ (Dec 24, 2024).
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-5-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明