博碩士論文 109389001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.144.72.54
姓名 潘則銨(Tse-An Pan)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 改良劑(鍶/鑭)與熱處理對亞共晶Al-Si合金微結構及導熱性質之影響
(Effects of modifiers (Sr/La) and heat treatments on the microstructures and thermal conductivity of hypoeutectic Al-Si alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著5G產品的發展,高頻電子元件所散出的熱量愈來愈高,如何提高散熱片的材料熱傳導率為一重要課題。本研究旨在滿足對高熱傳導性和優異鑄造性的散熱材料的需求。本研究透過不同改良劑(鍶/鑭)添加至亞共晶鋁矽合金中,並進行不同時間的球化退火,以改良共晶矽形貌進而改善合金導熱性。研究結果顯示,對於鑄造態合金而言,添加鍶可以透過增加共矽內雙晶濃度,將板狀的共晶矽完全轉變為絨毛狀結構,減少對電子及聲子的阻擋,能顯著提升導熱性和導電性。添加鑭也可以將共晶矽改變為絨毛狀結構,但是效果較添加鍶差。合金的流動性隨著矽含量的增加而提升,且硬度與矽含量也呈正相關,添加鍶和鑭則幾乎對流動性及硬度沒有影響。在球化退火合金中,無論是改良合金還是未改良合金都會經歷共晶矽的破碎和球化,從而提高導熱性及導電性。在經過4小時的球化退火後,由於導電性與導熱性對不同缺陷敏感度的不同Al-2Si和Al-4Si中導電性與導熱性出現相反的趨勢。此外,共晶Si的破碎和球化會導至鋁基地中的缺陷增加,使導熱性與導電性下降。這些發現對於開發高性能散熱材料提供了新的解決方案。其望能促進散熱材料的發展,為高功率應用領域提供更可靠和高效的解決方案。
摘要(英) The increasing power density involved in various applications presents significant challenges for heat dissipation. Materials with high thermal conductivity are vital to address these limitations and enable the development of high-performance solutions. This study aims to address the need for heat-sink materials with high castability and excellent thermal conductivity. Hypoeutectic Al-Si alloys are modified with different additives, including Sr and La, and subjected to spheroid annealing of varying durations to comprehensively investigate the effects of modifiers and heat treatments on the microstructures and thermal conductivity of these alloys. The findings reveal that, in the as-cast alloys, the addition of Sr completely transforms the plate-like eutectic Si into a fibrous-like structure, significantly improving electrical and thermal conductivity. Adding La also modifies the eutectic Si into a fibrous-like structure, albeit with a lesser improvement in conductivity. Additionally, the fluidity of the alloys improves with higher Si content, while the hardness exhibits a positive relationship with Si content and these are minimally affected by addition of Sr and La. In spheroid-annealed alloys, both modified and unmodified alloys undergo the fragmentation and spheroidization of eutectic Si, leading to improved electrical and thermal conductivity. The sensitivity of point defects and structural defects causes opposing trends in electrical and thermal conductivity between Al-2Si and Al-4Si after 4 hr of spheroid annealing. Furthermore, the fragmentation and spheroidization of eutectic Si involve defects in the Al matrix, resulting in decreased electrical and thermal conductivity, particularly for alloys with coarse eutectic Si in the as-cast state.
關鍵字(中) ★ 鋁矽合金
★ 改良劑
★ 鍶
★ 鑭
★ 球化熱處理
★ 鑄造流動性
★ 熱傳導性
★ 導電性
★ 背向電子散射繞射
關鍵字(英) ★ Al-Si alloy
★ Sr
★ La
★ spheroidization annealing
★ fluidity
★ thermal conductivity
★ electrical conductivity
★ electron back scatter diffraction
論文目次 摘要 I
Abstract II
謝誌 III
Table of Contents IV
List of Figures VII
List of Tables XII
1. Introduction 1
1.1 Heat sinks 1
1.1.1 Al extrusion heat sink 4
1.1.2 Al die-cast heat sink 6
1.3 Al-Si alloy 9
1.3.1 Microstructure of unmodified Al-Si alloy 10
1.3.2 Microstructure of modified Al-Si alloy 14
1.3.3 Effect of heat treatments on Al-Si alloy 17
1.4 Fluidity of Al-Si alloy 19
1.5 Thermal conductivity of Al-Si alloy 22
1.6 Purpose 28
2. Experimental procedure 30
2.1 Alloy preparation and casting 30
2.2 Fluidity test 32
2.3 Heat treatment 32
2.4 Microstructure 32
2.4.1 Metallography 32
2.4.2 Scanning electron microscopy 33
2.4.3 Electron backscatter diffraction 33
2.4.4 Transmission electron microscopy 35
2.5 Hardness test 35
2.6 Electrical conductivity 35
2.7 Thermal conductivity 36
3. Results and discussions 37
3.1 Microstructures 37
3.1.1 As-cast microstructures of unmodified alloy 37
3.1.2 As-cast microstructures of Sr-modified alloy 44
3.1.3 As-cast microstructures of La-modified alloy 49
3.2 Fluidity 54
3.3 Hardness of the as-cast alloys 56
3.4 Thermal and electrical conductivities of the as-cast alloy 58
3.5 Spheroid annealed microstructures 62
3.5 Thermal and electrical conductivities after spheroid annealing 73
4. Conclusions 78
Reference 80
Appendix 1 Publications 90
Appendix 2 92

參考文獻 [1] K.N. Ramesh, T.K. Sharma, G.A.P. Rao, “Latest Advancements in Heat Transfer Enhancement in the Micro-channel Heat Sinks: A Review” Arch. Computat. Methods Eng. Vol. 28, pp. 3135–3165 (2021).
[2] Erp R. Van., Kampitsis G., Matioli E., “A manifold microchannel heat sink for ultra-high power density liquid-cooled converters” In: IEEE Applied Power Electronics Conference and Exposition—APEC, pp. 1383–1389 (2019).
[3] S.E. Ghasemi, A.A. Ranjbar , M.J. Hoseini , S. Mohsenian, “Design optimization and experimental investigation of CPU heat sink cooled by alumina-water nanofluid”, JMR&T, Vol. 15, pp. 2276-2286 (2021)
[4] Kwang-Soo Kim , Myong-Hee Won , Jong-Wook Kim , Byung-Joon Back, “ Heat pipe cooling technology for desktop PC CPU”, Applied Thermal Eng., pp. 1137–1144(2003)
[5] Andrea Sce, Lorenzo Caporale, “High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks”, Phys.: Conf. Ser. 525 012020 (2014)
[6] Amer Al-damooka, Fahad Saleh Alkasmoul, “Heat transfer and airflow characteristics enhancement of compact plate-pin fins heat sinks - a review”, Propulsion and Power Research, Vol. 7, Issue 2, pp. 138-146 (2018)
[7] Bakhtiyar Mohammad Nafis, Reece Whitt, Ange-Christian Iradukunda & David Huitink, “Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review”, Heat Transfer Eng., Vol. 42, Issue 12, pp. 967-984 (2021)
[8] Jie Gao , Zhuohuan Hu, Qiguo Yang , Xing Liang , Hongwei Wu, “ Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress”, Thermal Science and Engineering Progress(TSEP), Volume 29, 101203(2022)
[9] Weibo Que, Qiang Zhang, Dehuai Zeng & Chenxue Wang, “Simulation of Heat Dissipation in a Closed Enclosure Based On Flotherm”, IOP Conf. Ser.: Earth Environ. Sci., Volume 252, Issue 3(2019)
[10] Maha A. Hussein, Vinous M. Hameed, Hussein T. Dhaiban, “ An implementation study on a heat sink with different fin configurations under natural convective conditions”, Case Studies in Thermal Eng., Vol. 30, 101774(2022)
[11] Tat-Tai Truong, Quang-Cherng Hsu, Van-Canh Tong and Jinn-Jong Sheu, “A Design Approach of Porthole Die for Flow Balance in Extrusion of Complex Solid Aluminum Heatsink Profile with Large Variable Wall Thickness”, Metals, Vol.10, Issue 553(2020)
[12] Xiang-Qi Wang, Christopher Yap, Arun S. Mujumdar, “A parametric study of phase change material (PCM)-based heat sinks”, International Journal of Thermal Sciences, Vol. 47, pp.1055–1068 (2008)
[13] Seri Lee, Member, IEEE, “Optimum Design and Selection of Heat Sinks”, Ieee Transactions On Components, Packaging, and Manufacturing Technology-Part a, Vol. 18, 4 (1995)
[14] Liyong Ni , Shuting He , Yongle Huang , Longjiang Niu , Gaofang He and Wei Peng, “Near Net Forming Research for Fin-Typed LED Radiator”, Materials, Vol. 15 (2022)
[15] Cheol-Woo Kim, Jae-Ik Cho, Se-Weon Choi, Young-Chan Kim, “the effect ofalloying elements on thermal conductivity of aluminum alloys in high pressure die casting”, Advanced Materials Research Vol. 813, pp. 175-178 (2013)
[16] Je-Sik Shin , Se-Hyun Ko, Ki-Tae Kim, “Development and characterization of low-silicon cast aluminum alloys for thermal dissipation”, Journal of Alloys and Compounds, Vol. 644, pp. 673-686 (2015)
[17] Shindé SL, Goela JS. High thermal conductivity materials. New York: Springer. (2006)
[18] Zühtü Onur Pehlivanlı & Muharrem Pul, “Investigation of the effect of B4C amount and sintering temperature on the thermal properties of the material in Al 1070–B4C composites”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications,Vol. 235(12) pp.2746-2761 (2021)
[19] Toshio Haga, Shinjiro Imamura and Hiroshi Fuse, “Fluidity Investigation of Pure Al and Al-Si Alloys”, Material, Vol. 14, 5372 (2021)
[20] Yasushi Iwata, Shuxin Dong, Yoshio Sugiyama and Hiroaki Iwahori, “Effects of Solidification Behavior during Filling on Surface Defects of Aluminum Alloy Die Casting”, Materials Transactions, Vol. 54, No. 10, pp. 1944-1950 (2013)
[21] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch,“Review of thermal conductivity in composites: Mechanisms, parameters and theory”, Progress in Polymer Science,Vol. 61 pp. 1-28 (2016)
[22] Chuangye Su, Dejiang Li, Alan A. Luo, Tao Ying, Xiaoqin Zeng, “Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study”, Journal of Alloys and Compounds, Vol. 747 pp. 431-437 (2018)
[23] J. C. Klöckner, M. Matt, P. Nielaba, F. Pauly, and J. C. Cuevas, “Thermal conductance of metallic atomic-size contacts: Phonon transport and Wiedemann-Franz law”, Physical Review B, Vol. 96, 205405 (2017)
[24] A. D. Avery, S. J. Mason, D. Bassett, D. Wesenberg, and B. L. Zink, “Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law”, Physical Review B, Vol. 92, 214410 (2015)
[25] J. E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM, Metals Park, OH (1984)
[26] Moisa Javdani & Daniel, “Application of cast Al–Si alloys in internal combustion engine components”, International Materials Reviews, Vol. 59 (3), pp.132-158 (2014)
[27] Cho, Y.H., Kim, H.W., Lee, J.M., “A new approach to the design of a low Si-added Al–Si casting alloy for optimising thermal conductivity and fluidity” J Mater Sci, Vol.50, pp.7271–7281 (2015)
[28] Haga T, Fuse H, Terao M., “Fabrication of Thin Heat Sinks by the Die Casting of Semisolid Al-25%Si.” Solid State Phenomena, Vol. 285, pp. 423–428 (2019)
[29] Zhengyun Wang, Hui Wang, Mei Yang, Wenwen Sun, Guangfu Yin, Qinyong Zhang, Zhifeng Ren, “Thermal reliability of Al-Si eutectic alloy for thermal energy storage”, Materials Research Bulletin, Vol. 95, pp.300-306 (2017)
[30] I.E. Ogunrinola, A.O. Ndubuisi, P.O. Babalola, M.L. Akinyemi, “Al-Si alloy for thermal storage applications-a review” J. Phys. : Conf. Ser. 1378 042038 (2019)
[31] N. Saini, D.K. Dwivedi, P.K. Jain, H. Singh, “Surface Modification of Cast Al-17%Si Alloys using Friction Stir Processing”, Procedia Engineering, Vol. 100, pp. 1522 –1531 (2015)
[32] H.R. Kotadia, A. Das, “Modification of solidification microstructure in hypo- and hyper-eutectic Al–Si alloys under high-intensity ultrasonic irradiation”, Journal of Alloys and Compounds, Vol. 620, pp. 1-4 (2015)
[33] Ali Mazahery & Mohsen Ostad Shabani, “Modification Mechanism and Microstructural Characteristics of Eutectic Si in Casting Al-Si Alloys: A Review on Experimental and Numerical Studies”, The Minerals, Metals & Materials Society, Vol. 66, No. 5 (2014)
[34] K. Nogita, H. Yasuda, M. Yoshiya, S.D. McDonald, K. Uesugi, A. Takeuchi, Y. Suzuki, “The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys” Journal of Alloys and Compounds, Vol.489, pp. 415-420 (2010).
[35] Peyman Saidi, “Simulation Based Study Of Solidification In Aluminum-Silicon System”,(2015)
[36] Ali mazahery & Mohsen Ostad Shabani, “Modification Mechanism and Microstructural Characteristics of Eutectic Si in Casting Al-Si Alloys: A Review on Experimental and Numerical Studies”, The Minerals, Metals & Materials Society, Vol. 66, No. 5 (2014)
[37] Xiaorui Liu, Yudong Zhang, Benoît Beausir, Fang Liu, Claude Esling, Fuxiao Yu, Xiang Zhao, Liang Zuo, “Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al–12.7%Si alloys investigated by SEM/EBSD”, Acta Materialia, Vol. 97, pp. 338-347 (2015)
[38] Sathyapal Hegde Æ K. Narayan Prabhu, “Modification of eutectic silicon in Al–Si alloys”, J. Mater. Sci., Vol. 43, pp. 3009–3027 (2008)
[39] J. Barrirero, C. Pauly, M. Engstler, J.Ghanbaja, N.Ghafoor, J. Li4, P. Schumacher, M. Odén2 & F. Mücklich, “Eutectic modifcation by ternary compound cluster formation in Al-Si alloys”, Scientific Reports (2019)
[40] Sigworth, G.K. “The Modification of Al-Si Casting Alloys: Important Practical and Theoretical Aspects”, Inter Metalcast, Vol. 2, pp. 19–40 (2008)
[41] Qun Luo, Xingrui Li, Qian Li, Lingyang Yuanc, Liming Pengc, Fusheng Pan, “Achieving grain refinement of α-Al and Si modification simultaneously by La–B–Sr addition in Al–10Si alloys, Wenjiang Ding”, Journal of Materials Science & Technology, Vol. 135, pp. 97-110 (2023)
[42] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, “The role of strontium in modifying aluminium–silicon alloys”, Acta Materialia, Vol. 60, Issue 9, pp. 3920-3928 (2012)
[43] Darlapudi A, Mcdonald SD, Terzi S, Prasad A, Felberbaum M,St John DH. “The influence of ternary alloying elements on the Al–Si eutectic microstructure and the Si morphology” J Cryst. Growth Vol. 433, pp. 63–73 (2016).
[44] Dahle A, Nogita K, Mcdonald SD, Dinnis C, Lu L., “Eutectic modification and microstructure development in Al–Si Alloys” Mater Sci. Eng. A Vol. 413-414, pp. 243- 248 (2005).
[45] Yang CL, Li YB, Dang B, LÜ HB, Liu F. “Effects of cooling rate on solution heat treatment of as-cast A356 alloy” Trans. Nonferrous Met. Soc. China Vol. 25, pp. 3189–3196 (2015).
[46] Kahtani S, Doty H, Samuel F. “Combined effect of melt thermal treatment and solution heat treatment on eutectic Si particles in cast Al–Si alloys” Int. J. Cast Met. Res. Vol. 27, pp.38–48 (2014).
[47] Li R.X., Li R.D., Li C.X., Hu Z.Q., “Effect of heat treatment on eutectic silicon morphology and mechanical property in AlSiCuMg cast alloys” Trans. Nonferrous Met. Soc. China Vol. 14, pp. 496–500 (2004).
[48] Diana A. Lados, Diran Apelian & Libo Wang, “Solution Treatment Effects on Microstructure and Mechanical Properties of Al-(1 to 13 pct)Si-Mg Cast Alloys”, Metallurgical & Materials Transactions, Vol. 42B (2011)
[49] Xiaorui Liu, “Crystallographic and microstructural study of as-cast and heat-treated Srmodified”, Al12.7Si alloys. Materials. Université de Lorraine, (2016)
[50] G. Heiberg, L. Arnberg. Investigation of the microstructure of the Al-Si eutectic in binary aluminium-7 wt% silicon alloys by electron backscatter diffraction (EBSD), J. Light Met., Vol. 1, pp. 43-49 (2001)
[51] K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, M. Chakraborty, “Fluidity of aluminum alloys and composites: A review”, Journal of Alloys and Compounds, Vol. 456, Issues 1–2, pp. 201-210 (2008)
[52] Guoling Mao, Dongyang Liu, Wenli Gao, Shanguang Liu, Liwei Zhong, “The effects of copper (Cu) or zinc (Zn) on fluidity of A357 alloy”, Materials Letters, Vol. 304, 130733 (2021)
[53] Lang G., “Aluminium”, vol.48, No.10, pp.664-672 (1972).
[54] Niyama E., Anzai K., Funakubo T. and Hiratsuka S., “Some basic research for thin-wall casting technology” J. of Mat. Proc. Tech., Vol.63, pp. 779-783 (1997).
[55] Fisher K., Fundamentals of solidification, 3th ed., Trans Tech Pub., (1989).
[56] Flemings M. C., Niyama E. and Taylor H.F., “Fluidity of Aluminium alloys. An experimental and qualitative evaluation”, AFS Trans., Vol. 69, pp. 566-576 (1961).
[57] Sheshradri M.R. and Ramachandran A., “Casting fluidity and fluidity of aluminium and its alloys” Modern Casting, Vol.21, pp.110-122 (1965).
[58] Dahle A.K., Bæckerund L. and Arnberg L., “Castability of Aluminium foundry alloys” Final report for AFS, (1997).
[59] A. Porlevin and P. Bastien, "Facteurs Principaux de la Coulabilite des metaux purs," Comptes rendus, Vol. 194. p. 599 (1932).
[60] J.T. Stauffer, Pewterer, Lititz, PA 17543, private communication(1987).
[61] Mollard, F.R., Flemings, M.C., Niyama, E.F., “Aluminum Fluidity in Casting” JOM, Vol. 39, 34 (1987).
[62] S. Morimoto, N. Onishi and S. Okada, “Development of a Low Pressure Die Casting Process for Improved Soundness of Aluminum Castings,” AFS Transactions, Vol. 95, (1987)
[63] Mingfan Qi, Yonglin Kang, Quanquan Qiu, Wenchuan Tang, Jingyuan Li, Baoshun Li, “Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure die-casting”, Journal of Alloys and Compounds, Vol. 749, pp. 487-502 (2018)
[64] Mario De Giovanni, James A. Kaduk, Prakash Srirangam,“Modification of Al-Si Alloys by Ce or Ce with Sr“ Journal of The Minerals, Metals & Materials Society, Vol. 71, pp. 426–434 (2019)
[65] J.Q. Gan, Y.J. Huang , C. Wen, J. Du, “ Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al−Si alloys“, Transactions of Nonferrous Metals Society of China, Volume 30, Issue 11, , pp. 2879-2890 (2020)
[66] Cheng Wen, Junqi Gan, Chengbo Li, Yujian Huang & Jun Du, “Comparative Study on Relationship Between Modification of Si Phase and Thermal Conductivity of Al–7Si Alloy Modified by Sr/RE/B/Sb Elements“, International Journal of Metalcasting Vol. 15, pp. 194–205 (2021)
[67] Jin Guo, Zhi-Ping, Guan, Rui-Fang, Yan, Pin-Kui, Ma, Ming-Hui, Wang, Po Zhao, Jin-Guo Wang, “Effect of Modification with Different Contents of Sb and Sr on the Thermal Conductivity of Hypoeutectic Al-Si Alloy“, Metals, 10(12), 1637 (2020)
[68] Velu Nirmal Kumar, Yasuhiro Hayakawa, Haruhiko Udono, Yuko Inatomi, “An Approach to Optimize the Thermoelectric Properties of III–V Ternary InGaSb Crystals by Defect Engineering via Point Defects and Microscale Compositional Segregations“, Inorganic Chemistry, Vol. 58, pp. 11579-11588 (2019)
[69] Xun Zhang, Yuli Zhou, Gu Zhong, Junchao Zhang, Yunan Chen, Wanqi Jie, Peter Schumacher & Jiehua Li,“Effects of Si and Sr elements on solidification microstructure and thermal conductivity of Al–Si-based alloys“, Journal of Materials Science, Vol 57, pp. 6428–6444 (2022)
[70] Marcin Stawarz, Malwina Dojka, “Bifilm Inclusions in High Alloyed Cast Iron “, Materials, 14(11), 3067 (2021)
[71] Timelli Giulio; Caliari Daniele; Rakhmonov Jovid, “Influence of Process Parameters and Sr Addition on the Microstructure and Casting Defects of LPDC A356 Alloy for Engine Blocks“, Journal of Materials Science & Technology, Vol. 32, Issue 6, pp. 515-523 (2016)
[72] Kazuhiro Nogita, Arne Kristian Dahle, “Determination of Eutectic Solidification Mode in Sr-modified Hypoeutectic Al-Si Alloys by EBSD“, Materials Transactions Jim, Vol. 42, Issue 2, pp. 207~214 (2001)
[73] ASTM E18-E18a, “Standard Test Methods for Rockwell Hardness of Metallic Metals”, 2018.
[74] Lisa‑Marie Heisig, Rhena Wulf, Tobias M. Fieback, “Investigation and Optimization of the Hot Disk Method for Thermal Conductivity Measurements up to 750 °C”, International Journal of Thermophysics International Journal of Thermophysics, Vol. 44, 82 (2023)
[75] Silas E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials” Review of Scientific Instruments, 62, 797 (1991)
[76] Ozen Gursoy, Giulio Timelli, “Lanthanides: a focused review of eutectic modification in hypoeutectic Al–Si alloys”, J. Mater. Res, Technol. Vol. 9, pp. 8652–8666 (2020)

指導教授 李勝隆(Sheng-Long Lee) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明