參考文獻 |
[1] Y. Li, T. Beaubouef, and others, “Data Mining: Concepts, Background and Methods of Integrating Uncertainty in Data Mining,” CCSC SC Stud EJ, vol. 3, pp. 2–7, 2010.
[2] C. Dobre and F. Xhafa, “Intelligent services for Big Data science,” Spec. Sect. Innov. Methods Algorithms Adv. Data-Intensive Comput., vol. 37, pp. 267–281, Jul. 2014, doi: 10.1016/j.future.2013.07.014.
[3] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,” AI Mag., vol. 17, no. 3, Art. no. 3, Mar. 1996, doi: 10.1609/aimag.v17i3.1230.
[4] M. Munson, “A study on the importance of and time spent on different modeling steps,” Sigkdd Explor., vol. 13, pp. 65–71, May 2012, doi: 10.1145/2207243.2207253.
[5] K. Cios and L. Kurgan, “Trends in Data Mining and Knowledge Discovery,” Adv. Tech. Knowl. Discov. Data Min., Nov. 2003, doi: 10.1007/1-84628-183-0_1.
[6] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive boosting for classification of imbalanced data,” Pattern Recognit., vol. 40, no. 12, pp. 3358–3378, Dec. 2007, doi: 10.1016/j.patcog.2007.04.009.
[7] C. Zhang, J. H. Sun, and K. C. Tan, “Deep Belief Networks Ensemble with Multi-objective Optimization for Failure Diagnosis,” in 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon Tong, Hong Kong, Oct. 2015, pp. 32–37. doi: 10.1109/SMC.2015.19.
[8] T. Fawcett and F. Provost, “Adaptive Fraud Detection,” Data Min. Knowl. Discov., vol. 1, no. 3, pp. 291–316, Sep. 1997, doi: 10.1023/A:1009700419189.
[9] R. M. Valdovinos and J. S. Sanchez, “Class-dependant resampling for medical applications,” in Fourth International Conference on Machine Learning and Applications (ICMLA’05), Dec. 2005, p. 6 pp.-. doi: 10.1109/ICMLA.2005.15.
[10] K. Ezawa, M. Singh, and S. W. Norton, “Learning Goal Oriented Bayesian Networks for Telecommunications Risk Management,” in In Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 139–147.
[11] J. Sun, M. Rahman, Y. S. Wong, and G. S. Hong, “Multiclassification of tool wear with support vector machine by manufacturing loss consideration,” Int. J. Mach. Tools Manuf., vol. 44, no. 11, pp. 1179–1187, Sep. 2004, doi: 10.1016/j.ijmachtools.2004.04.003.
[12] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data Preprocessing for Supervised Learning,” Int. J. Comput. Sci., vol. 1, pp. 111–117, Jan. 2006.
[13] F. Famili, W.-M. Shen, R. Weber, and E. Simoudis, “Data Preprocessing and Intelligent Data Analysis,” Intell Data Anal, 1997, doi: 10.1016/S1088-467X(98)00007-9.
[14] O. E. de Noord, “The influence of data preprocessing on the robustness and parsimony of multivariate calibration models,” Chemom. Intell. Lab. Syst., vol. 23, no. 1, pp. 65–70, Apr. 1994, doi: 10.1016/0169-7439(93)E0065-C.
[15] A. B. Patel, M. Birla, and U. Nair, “Addressing big data problem using Hadoop and Map Reduce,” in 2012 Nirma University International Conference on Engineering (NUiCONE), Dec. 2012, pp. 1–5. doi: 10.1109/NUICONE.2012.6493198.
[16] L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution,” Jan. 2003, vol. 2, pp. 856–863.
[17] Y. Zhai, Y.-S. Ong, and I. W. Tsang, “The Emerging ‘Big Dimensionality,’” IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14–26, Aug. 2014, doi: 10.1109/MCI.2014.2326099.
[18] H. Liu and R. Setiono, “A Probabilistic Approach to Feature Selection - A Filter Solution,” undefined, 1996, Accessed: Jun. 18, 2022. [Online]. Available: https://www.semanticscholar.org/paper/A-Probabilistic-Approach-to-Feature-Selection-A-Liu-Setiono/7285ee82aa0cde847fafb8b1109dd19dbdc04e35
[19] V. Fonti and E. Belitser, “Paper in Business Analytics Feature Selection using LASSO,” undefined, 2017, Accessed: Jun. 18, 2022. [Online]. Available: https://www.semanticscholar.org/paper/Paper-in-Business-Analytics-Feature-Selection-using-Fonti-Belitser/24acd159910658223209433cf4cbe3414264de39
[20] L. Du, Y. Xu, and H. Zhu, “Feature Selection for Multi-Class Imbalanced Data Sets Based on Genetic Algorithm,” Ann. Data Sci., vol. 2, no. 3, pp. 293–300, Sep. 2015, doi: 10.1007/s40745-015-0060-x.
[21] H. Zhao, S. Wang, and Z. Wang, “Multiclass Classification and Feature Selection Based on Least Squares Regression with Large Margin,” Neural Comput., vol. 30, no. 10, pp. 2781–2804, Oct. 2018, doi: 10.1162/neco_a_01116.
[22] J. Izetta, P. F. Verdes, and P. M. Granitto, “Improved multiclass feature selection via list combination,” Expert Syst. Appl., vol. 88, pp. 205–216, Dec. 2017, doi: 10.1016/j.eswa.2017.06.043.
[23] R. J. Cascaro, B. D. Gerardo, and R. P. Medina, “Filter Selection Methods for Multiclass Classification,” in Proceedings of the 2nd International Conference on Computing and Big Data, New York, NY, USA, Oct. 2019, pp. 27–31. doi: 10.1145/3366650.3366655.
[24] L. Yijing, G. Haixiang, L. Xiao, L. Yanan, and L. Jinling, “Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data,” Knowl.-Based Syst., vol. 94, pp. 88–104, Feb. 2016, doi: 10.1016/j.knosys.2015.11.013.
[25] C.-F. Tsai and Y.-T. Sung, “Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches,” Knowl.-Based Syst., vol. 203, p. 106097, Sep. 2020, doi: 10.1016/j.knosys.2020.106097.
[26] B. Krawczyk, M. Koziarski, and M. Woźniak, “Radial-Based Oversampling for Multiclass Imbalanced Data Classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 8, pp. 2818–2831, Aug. 2020, doi: 10.1109/TNNLS.2019.2913673.
[27] M. L. Bermingham et al., “Application of high-dimensional feature selection: evaluation for genomic prediction in man,” Sci. Rep., vol. 5, no. 1, Art. no. 1, May 2015, doi: 10.1038/srep10312.
[28] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014, doi: 10.1016/j.compeleceng.2013.11.024.
[29] M. Dash and H. Liu, “Feature selection for classification,” Intell. Data Anal., vol. 1, no. 1, pp. 131–156, Jan. 1997, doi: 10.1016/S1088-467X(97)00008-5.
[30] S. Wang et al., “Pathological Brain Detection by Artificial Intelligence in Magnetic Resonance Imaging Scanning (Invited Review),” Prog. Electromagn. Res., vol. 156, pp. 105–133, 2016, doi: 10.2528/PIER16070801.
[31] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–2517, Oct. 2007, doi: 10.1093/bioinformatics/btm344.
[32] Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th ACM international conference on Multimedia, New York, NY, USA, Sep. 2007, pp. 301–304. doi: 10.1145/1291233.1291297.
[33] J. Shlens, “A Tutorial on Principal Component Analysis.” arXiv, Apr. 03, 2014. doi: 10.48550/arXiv.1404.1100.
[34] K. Kira and L. A. Rendell, “A Practical Approach to Feature Selection,” in Machine Learning Proceedings 1992, D. Sleeman and P. Edwards, Eds. San Francisco (CA): Morgan Kaufmann, 1992, pp. 249–256. doi: 10.1016/B978-1-55860-247-2.50037-1.
[35] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell., vol. 97, no. 1, pp. 273–324, Dec. 1997, doi: 10.1016/S0004-3702(97)00043-X.
[36] S.-U. Guan, Y. Qi, and C. Bao, “An Incremental Approach to MSE-Based Feature Selection.,” Int. J. Comput. Intell. Appl., vol. 6, pp. 451–471, Dec. 2006, doi: 10.1142/S1469026806002064.
[37] G. S. Krishnan and S. K. S., “A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data,” Appl. Soft Comput., vol. 80, pp. 525–533, Jul. 2019, doi: 10.1016/j.asoc.2019.04.019.
[38] J. H. Holland, “Genetic Algorithms and Adaptation,” in Adaptive Control of Ill-Defined Systems, O. G. Selfridge, E. L. Rissland, and M. A. Arbib, Eds. Boston, MA: Springer US, 1984, pp. 317–333. doi: 10.1007/978-1-4684-8941-5_21.
[39] S. Cateni, M. Vannucci, M. Vannocci, and V. Colla, “Variable Selection and Feature Extraction Through Artificial Intelligence Techniques,” 2013. doi: 10.5772/53862.
[40] Y. Chtioui, D. Bertrand, and D. Barba, “Feature selection by a genetic algorithm. Application to seed discrimination by artificial vision,” 1998, doi: 10.1002/(SICI)1097-0010(199801)76:1<77::AID-JSFA948>3.0.CO;2-9.
[41] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, Nov. 1995, vol. 4, pp. 1942–1948 vol.4. doi: 10.1109/ICNN.1995.488968.
[42] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008.
[43] T. Thaher et al., “An Enhanced Evolutionary Student Performance Prediction Model Using Whale Optimization Algorithm Boosted with Sine-Cosine Mechanism,” Appl. Sci., vol. 11, no. 21, Art. no. 21, Jan. 2021, doi: 10.3390/app112110237.
[44] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.
[45] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009, doi: 10.1016/j.ins.2009.03.004.
[46] M. Zhu and J. Song, “An Embedded Backward Feature Selection Method for MCLP Classification Algorithm,” Procedia Comput. Sci., vol. 17, pp. 1047–1054, Jan. 2013, doi: 10.1016/j.procs.2013.05.133.
[47] M. P, “Feature Selection Methods: A Study,” vol. 12, pp. 371–377, May 2021.
[48] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodol., vol. 58, no. 1, pp. 267–288, 1996.
[49] R. Muthukrishnan and R. Rohini, “LASSO: A feature selection technique in predictive modeling for machine learning,” in 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Oct. 2016, pp. 18–20. doi: 10.1109/ICACA.2016.7887916.
[50] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technometrics, vol. 42, no. 1, pp. 80–86, 2000, doi: 10.2307/1271436.
[51] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
[52] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random Forests and Decision Trees,” Int. J. Comput. Sci. IssuesIJCSI, vol. 9, Sep. 2012.
[53] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.
[54] C. Chen et al., “Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier,” Comput. Biol. Med., vol. 123, p. 103899, 2020, doi: https://doi.org/10.1016/j.compbiomed.2020.103899.
[55] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in Multiple Classifier Systems, Berlin, Heidelberg, 2000, pp. 1–15. doi: 10.1007/3-540-45014-9_1.
[56] Z.-H. Zhou, “Ensemble Learning,” in Encyclopedia of Biometrics, S. Z. Li and A. K. Jain, Eds. Boston, MA: Springer US, 2015, pp. 411–416. doi: 10.1007/978-1-4899-7488-4_293.
[57] S. Rayana, W. Zhong, and L. Akoglu, “Sequential Ensemble Learning for Outlier Detection: A Bias-Variance Perspective,” in 2016 IEEE 16th International Conference on Data Mining (ICDM), Dec. 2016, pp. 1167–1172. doi: 10.1109/ICDM.2016.0154.
[58] P. Bühlmann, “Bagging, Boosting and Ensemble Methods,” in Handbook of Computational Statistics: Concepts and Methods, J. E. Gentle, W. K. Härdle, and Y. Mori, Eds. Berlin, Heidelberg: Springer, 2012, pp. 985–1022. doi: 10.1007/978-3-642-21551-3_33.
[59] A. Ben Brahim and M. Limam, “Ensemble feature selection for high dimensional data: a new method and a comparative study,” Adv. Data Anal. Classif., vol. 12, Apr. 2017, doi: 10.1007/s11634-017-0285-y.
[60] C.-F. Tsai and Y.-C. Hsiao, “Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches,” Decis. Support Syst., vol. 50, no. 1, pp. 258–269, Dec. 2010, doi: 10.1016/j.dss.2010.08.028.
[61] P. Y. Pawar and S. Gawande, “A Comparative Study on Different Types of Approaches to Text Categorization,” 2012, doi: 10.7763/IJMLC.2012.V2.158.
[62] “Support-vector networks | SpringerLink.” https://link.springer.com/article/10.1007/BF00994018 (accessed Jun. 18, 2022).
[63] H. Zhang, “The Optimality of Naive Bayes,” Jan. 2004, vol. 2.
[64] “A comparative study of feature selection and machine learning techniques for sentiment analysis | Proceedings of the 2012 ACM Research in Applied Computation Symposium.” https://dl.acm.org/doi/10.1145/2401603.2401605 (accessed Jun. 18, 2022).
[65] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 4, pp. 463–484, Jul. 2012, doi: 10.1109/TSMCC.2011.2161285.
[66] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002, doi: 10.1613/jair.953. |