博碩士論文 109423038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.117.151.179
姓名 李紹齊(Shao-Chi Lee)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 基於色彩學改善個人化服裝推薦
(Application of Chromatics on Personalized Clothing Recommendation)
相關論文
★ 不動產仲介業銷售住宅類別之成交預測模型—以不動產仲介S公司為例★ 應用文字探勘技術建構預測客訴問題類別機器學習模型
★ 以機器學習技術建構顧客回購率預測模型:以某手工皂原料電子商務網站為例★ 以機器學習建構股價預測模型:以台灣股市為例
★ 以機器學習方法建構財務危機之預測模型:以台灣上市櫃公司為例★ 運用資料探勘技術於股票填息之預測模型:以台灣股市上市公司為例
★ 運用資料探勘技術優化 次世代防火牆規則之研究★ 應用資料探勘技術於電子病歷文本中識別相關新資訊
★ 應用深度學習於藥品後市場監督:Twitter文本分類任務★ 運用電子病歷與資料探勘技術建構腦中風病人心房顫動預測模型
★ 考量特徵選取與隨機森林之遺漏值填補技術★ 電子病歷縮寫消歧與一對多分類任務
★ 運用Meta-path與注意力機制改善個人化穿搭推薦★ 運用機器學習技術建構核保風險預測模型:以A公司為例
★ 風扇壽命預測使用大數據分析-以 X 公司為例★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-12以後開放)
摘要(中) 服裝推薦問題是近年諸多學者研究的議題,尤其是個人化服裝推薦任務有大
量方法進行探討,其主要結合商品圖像、文字特徵,以及用戶評分、評論等。本
研究針對過往在服裝推薦中鮮少討論的色彩學,以及使用者美學偏好作為基礎,
建立個人化的線上服裝推薦系統。
過去研究將色彩視為單純圖片特徵,缺乏消費者對其色彩學構成的心理因 素,而本研究討論服裝圖片的色彩學帶給消費者美學概念,以達成個人化美學偏 好推薦,並增加推薦合理性。本研究以 OB 嚴選具設計風格的穿搭圖片進行整體 色彩、服裝色彩、單品色彩風格提取,其依據為使用者會受圖片中不同元素吸 引,而對其有不同的美學印象及偏好。
研究架構分為內容導向、模型式協同過濾、混合式推薦方法。內容導向推薦 討論三大風格色彩如何影響商品間相似度,協同過濾推薦將使用者進行美學偏好 分群,再推薦與其同偏好使用者的商品選擇,混合式推薦則先將使用者進行偏好 分群,再依據其推薦候選找出與目標商品相似度高的服裝商品,最後評估推薦方 法間的 Hit Ratio。結果發現混合式及基於分群模型的推薦方法效果較好,驗證了 色彩學及美學概念應用於使用者偏好建模及服裝推薦的可行性及合理性。
摘要(英) Clothing recommendation has always been a popular topic, especially for clothing personalization. Generally, clothing recommendation requires images or texts information, and comments or ratings as well. Our study focuses on the chromatics features on images, which is seldom discussed by previous studies. We aim to build an online personalized clothing recommendation system based on users’ aesthetic preference.
Colors were regarded as just simple features of images by previous studies, which lacked a user’s psychological factors affected by images’ chromatics. Therefore, our study discusses the aesthetic concepts that images’ chromatics brings to users and build a personalized aesthetic recommendation with higher interpretability.
Users tend to be attracted by elements in images, so we thus extract the overall, clothing, and single-color style from OB Design’s clothing dataset to build users’ aesthetic preference. There are three recommendation systems, which include content- based, model-based collaborative filtering, and hybrid methods. To elaborate, content- based method is for computation on products similarity based on chromatics, model- based collaborative filtering is to cluster user’s aesthetic preference, and hybrid method uses both methods.
We conduct three experiments and assess the results by Hit Ratio, and we find the third system using both methods perform the best among all systems. In conclusion, our methods prove that applying chromatics and aesthetic features to model users’ preference and recommend clothing items is feasible and reasonable.
關鍵字(中) ★ 服裝推薦
★ 色彩美學特徵
★ 服裝物件擷取
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 5
第二章 文獻探討 7
2.1 服裝色彩學與推薦 7
第三章 研究方法 11
3.1 資料蒐集 12
3.2 資料處理 14
3.2.1 商品資料前處理—服裝物件辨識 14
3.2.2 商品資料前處理—三大風格色彩擷取 16
3.2.3 使用者資料前處理—服裝物件辨識、三大風格色彩擷取、美學詞彙轉換 18
3.3 尋找 Top-k 鄰居商品 20
3.3.1 商品—色彩特徵矩陣 20
3.3.2 計算商品相似度 22
3.4 尋找相似使用者 24
3.4.1 使用者美學特徵矩陣 24
3.4.2 找出相似使用者 24
3.5 推薦方法 25
3.5.1 推薦系統一:內容導向推薦 25
3.5.2 推薦系統二:基於模型式分群模型之協同過濾推薦 26
3.5.3 推薦系統三:結合模型式分群協同過濾及內容導向推薦 26
3.6 實驗設計 26
3.7 實驗評估指標 28
第四章 實驗結果與分析 29
4.1 實驗資料 29
4.2 實驗結果評估 29
4.2.1 實驗一、調整相似度計算權重wp、wc、ws的比例 29
4.2.2 實驗二、調整至少購買i個商品數量 30
4.2.3 實驗三、調整不同Top-k推薦結果 31
第五章 研究結論與建議 33
5.1 研究結論 33
5.2 研究限制 34
5.3 未來研究方向與建議 35
參考文獻 36
參考文獻 Naumov, M., Mudigere, D., Shi, H. J. M., Huang, J., Sundaraman, N., Park, J., ... & Smelyanskiy, M. (2019). Deep learning recommendation model for personalization and recommendation systems. arXiv preprint arXiv:1906.00091.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web (pp. 291-324). Springer, Berlin, Heidelberg.

Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Shah, H. (2016, September). Wide & deep learning for recommender systems.
In Proceedings of the 1st workshop on deep learning for recommender systems (pp. 7-10).

Kabbur, S., Ning, X., & Karypis, G. (2013, August). Fism: factored item similarity models for top-n recommender systems. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 659-667).

Tkalcic, M., Odic, A., Kosir, A., & Tasic, J. (2012). Affective labeling in a content- based recommender system for images. IEEE transactions on multimedia, 15(2), 391-400.

Wang, H., Wang, N., & Yeung, D. Y. (2015, August). Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1235-1244).

Lin, Y., Ren, P., Chen, Z., Ren, Z., Ma, J., & De Rijke, M. (2019). Explainable outfit recommendation with joint outfit matching and comment generation. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1502-1516.

Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., & Yan, S. (2012, June). Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition (pp. 3330-3337). IEEE.

Li, X., Wang, X., He, X., Chen, L., Xiao, J., & Chua, T. S. (2020, July). Hierarchical
fashion graph network for personalized outfit recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 159-168).

Hu, Y., Yi, X., & Davis, L. S. (2015, October). Collaborative fashion recommendation: A functional tensor factorization approach. In Proceedings of the 23rd ACM international conference on Multimedia (pp. 129-138).

Yang, W., Luo, P., & Lin, L. (2014). Clothing co-parsing by joint image segmentation and labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3182-3189).

Kiapour, M. H., Yamaguchi, K., Berg, A. C., & Berg, T. L. (2014, September). Hipster wars: Discovering elements of fashion styles. In European conference on computer vision (pp. 472-488). Springer, Cham.

Wang, X., Zhang, T., Tretter, D. R., & Lin, Q. (2013). Personal clothing retrieval on photo collections by color and attributes. IEEE Transactions on
Multimedia, 15(8), 2035-2045.

Jagadeesh, V., Piramuthu, R., Bhardwaj, A., Di, W., & Sundaresan, N. (2014, August). Large scale visual recommendations from street fashion images. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1925-1934).

Huang, J., Feris, R. S., Chen, Q., & Yan, S. (2015). Cross-domain image retrieval with a dual attribute-aware ranking network. In Proceedings of the IEEE international conference on computer vision (pp. 1062-1070).

Shamoi, P., Inoue, A., & Kawanaka, H. (2020). Modeling aesthetic preferences: Colorcoordination and fuzzy sets. Fuzzy Sets and Systems, 395, 217-234.

Moody, W., Kinderman, P., & Sinha, P. (2010). An exploratory study: Relationships
between trying on clothing, mood, emotion, personality and clothing preference. Journal of Fashion Marketing and Management: An International Journal.

Venugopal, K., Vadrevu, S., Dey, S., & Raju, T. V. (2020). PURCHASE BEHAVIOR OF DOMESTIC VERSUS GLOBAL BRANDS: IN CASE OF CLOTH, TEXTILES AND FOOTWEAR IN SRIKAKULAM TOWN. International Journal of Modern Agriculture, 9(4), 73-79.

Hefer, Y., & Cant, M. C. (2013). Visual Merchandising Displays Effect On Consumers: A Valuable Asset Or An Unnecessary Burden For Apparel
Retailers. International Business & Economics Research Journal (IBER), 12(10), 1217-1224.

Choo, S., & Kim, Y. (2003). Effect of color on fashion fabric image. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 28(3), 221-226.

Machajdik, J., & Hanbury, A. (2010, October). Affective image classification using features inspired by psychology and art theory. In Proceedings of the 18th ACM international conference on Multimedia (pp. 83-92).

Lu, P., Peng, X., Zhu, X., & Li, R. (2016). An EL-LDA based general color harmony model for photo aesthetics assessment. Signal Processing, 120, 731-745.

Liu, Z., Luo, P., Qiu, S., Wang, X., & Tang, X. (2016). Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1096-1104).

He, R., & McAuley, J. (2016, February). VBPR: visual bayesian personalized ranking from implicit feedback. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1).

Ge, Y., Zhang, R., Wang, X., Tang, X., & Luo, P. (2019). Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5337-5345).

Wong, W. K., Zeng, X. H., Au, W. M. R., Mok, P. Y., & Leung, S. Y. S. (2009). A fashion mix-and-match expert system for fashion retailers using fuzzy screening approach. Expert Systems with Applications, 36(2), 1750-1764.

Wang, X., Zhang, T., Tretter, D. R., & Lin, Q. (2013). Personal clothing retrieval on photo collections by color and attributes. IEEE transactions on multimedia, 15(8), 2035-2045.

Bakker, I., van der Voordt, T., Vink, P., de Boon, J., & Bazley, C. (2015). Color preferences for different topics in connection to personal characteristics. Color Research & Application, 40(1), 62-71.

Sullivan, C. R., Kazlauciunas, A., & Guthrie, J. T. (2017). Colored Apparel-Relevance to Attraction in Humans. Journal of Fashion Technology & Textile Engineering, 5(03).

Polanıá,L.F.,&Gupte,S.(2019,September).Learningfashioncompatibilityacross apparel categories for outfit recommendation. In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 4489-4493). IEEE.

Kasuga, H., Yamamoto, H., & Okamoto, M. (2000). Color quantization using the fast K-means algorithm. Systems and Computers in Japan, 31(8), 33-40.

Shamoi, P., Inoue, A., & Kawanaka, H. (2014). Fuzzy color space for apparel coordination. Open Journal of Information Systems (OJIS), 1(2), 20-28.
48

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630-645). Springer, Cham.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.

O′Donovan, P., Agarwala, A., & Hertzmann, A. (2011). Color compatibility from large datasets. In ACM SIGGRAPH 2011 papers (pp. 1-12).

Yang, N. C., Chang, W. H., Kuo, C. M., & Li, T. H. (2008). A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval. Journal of visual communication and image representation, 19(2), 92-105.

Chaturvedi, A., Green, P. E., & Caroll, J. D. (2001). K-modes clustering. Journal of classification, 18(1), 35-55.

Chien, B. C., & Cheng, M. C. (2002, May). A color image segmentation approach based on fuzzy similarity measure. In 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE′02. Proceedings (Cat. No. 02CH37291) (Vol. 1, pp. 449-454). IEEE.

Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit feedback datasets. In 2008 Eighth IEEE international conference on data mining (pp. 263-272). Ieee.
指導教授 胡雅涵(Ya-Han Hu) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明