參考文獻 |
李俊儀 (2021)。基於深度學習技術之假新聞偵測研究-以臺灣社群Cofacts為例(未出版碩士論文)。國防大學,桃園縣。
林儀, & 林志成 (2019)。年金改革假新聞之研究。學校行政,(121),204-219.
許文錦, 李牧衡, & 呂明聲 (2022)。運用 BERT 深度學習模型於衛教謠言檢測之研究。資訊管理學報 ,29(1),27-44.
郭宇璇 (2022)。假訊息與事實查核調查出爐|九成民眾收過假消息 五成民眾自認不受騙. https://www.feja.org.tw/63754
楊惟任 (2019)。假新聞的危害與因應。展望與探索月刊,17(12),95-116.
葉乃靜 (2020a)。由新冠病毒 (COVID-19) 防疫機制談假新聞防制。臺北市立圖書館館訊,35(3),90-113.
葉乃靜 (2020b)。後真相時代社群媒體上的假新聞分享行為研究。Journal of Library and Information Science,46(1),96-112.
鍾慧錦 (2018)。拒絕假新聞!LINE轉傳行為之研究(未出版碩士論文)。佛光大學,宜蘭縣。
Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-236.
Ball, P., & Maxmen, A. (2020). The epic battle against coronavirus misinformation and conspiracy theories. Nature, 581(7809), 371-375.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Conroy, N. K., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proceedings of the association for information science and technology, 52(1), 1-4.
Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of machine learning research, 2(Dec), 265-292.
Cuan-Baltazar, J. Y., Muñoz-Perez, M. J., Robledo-Vega, C., Pérez-Zepeda, M. F., & Soto-Vega, E. (2020). Misinformation of COVID-19 on the internet: infodemiology study. JMIR public health and surveillance, 6(2), e18444.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Espinosa, M. S., Centeno, R., & Rodrigo, Á. (2020). Analyzing User Profiles for Detection of Fake News Spreaders on Twitter. CLEF (Working Notes),
Gaydhani, A., Doma, V., Kendre, S., & Bhagwat, L. (2018). Detecting hate speech and offensive language on twitter using machine learning: An n-gram and tfidf based approach. arXiv preprint arXiv:1809.08651.
Gilda, S. (2017). Notice of Violation of IEEE Publication Principles: Evaluating machine learning algorithms for fake news detection. 2017 IEEE 15th student conference on research and development (SCOReD),
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.
Gundapu, S., & Mamidi, R. (2021). Transformer based automatic COVID-19 fake news detection system. arXiv preprint arXiv:2101.00180.
Gupta, A., Li, H., Farnoush, A., & Jiang, W. (2022). Understanding patterns of COVID infodemic: A systematic and pragmatic approach to curb fake news. Journal of business research, 140, 670-683.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Kadhim, A. I. (2019). Term weighting for feature extraction on Twitter: A comparison between BM25 and TF-IDF. 2019 international conference on advanced science and engineering (ICOASE),
Khan, J. Y., Khondaker, M. T. I., Afroz, S., Uddin, G., & Iqbal, A. (2021). A benchmark study of machine learning models for online fake news detection. Machine Learning with Applications, 4, 100032.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
Lavin, M. (2019). Analyzing documents with TF-IDF. The Programming Historian.
Li, X., Meng, Y., Sun, X., Han, Q., Yuan, A., & Li, J. (2019). Is word segmentation necessary for deep learning of Chinese representations? arXiv preprint arXiv:1905.05526.
Li, Y., Du, G., Xiang, Y., Li, S., Ma, L., Shao, D., Wang, X., & Chen, H. (2020). Towards Chinese clinical named entity recognition by dynamic embedding using domain-specific knowledge. Journal of biomedical informatics, 106, 103435.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets. Cambridge University Press.
Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in bertology: What we know about how bert works. Transactions of the Association for Computational Linguistics, 8, 842-866.
Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
Smitha, N., & Bharath, R. (2020). Performance comparison of machine learning classifiers for fake news detection. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA),
Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588.
V-dem. (2021). https://www.v-dem.net/
Varol, O., Ferrara, E., Davis, C., Menczer, F., & Flammini, A. (2017). Online human-bot interactions: Detection, estimation, and characterization. Proceedings of the international AAAI conference on web and social media
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Vijjali, R., Potluri, P., Kumar, S., & Teki, S. (2020). Two stage transformer model for COVID-19 fake news detection and fact checking. arXiv preprint arXiv:2011.13253.
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151.
Wang, C., Gao, M., He, X., & Zhang, R. (2015). Challenges in chinese knowledge graph construction. 2015 31st IEEE International Conference on Data Engineering Workshops
Wang, W. Y. (2017). " liar, liar pants on fire": A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648.
Yang, W., Xie, Y., Lin, A., Li, X., Tan, L., Xiong, K., Li, M., & Lin, J. (2019). End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718.
YarAdua, S. M. (2018). Influence of Digital Images on the Propagation of Fake News on Twitter in Russia and Ukraine Crisis.
Zheng, X., Chen, H., & Xu, T. (2013). Deep learning for Chinese word segmentation and POS tagging. Proceedings of the 2013 conference on empirical methods in natural language processing
Zhou, X., & Zafarani, R. (2020). A survey of fake news: Fundamental theories, detection methods, and opportunities, ACM Computing Surveys (CSUR) |