參考文獻 |
Al-Rakhami, M. S., & Al-Amri, A. M. (2020). Lies kill, facts save: detecting COVID-19 misinformation in twitter. Ieee access, 8, 155961-155970.
Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-236.
Anand, K., Karade, S., Sen, S., & Gupta, R. (2020). SARS-CoV-2: camazotz′s curse. Medical journal armed forces india, 76(2), 136-141.
Baym, G. (2005). The Daily Show: Discursive integration and the reinvention of political journalism. Political communication, 22(3), 259-276.
Berkowitz, D., & Schwartz, D. A. (2016). Miley, CNN and The Onion: When fake news becomes realer than real. Journalism practice, 10(1), 1-17.
Bessi, A., & Ferrara, E. (2016). Social bots distort the 2016 US presidential election online discussion. First Monday, 21(11-7).
Breeanna, H. (2013). Miley Cyrus twerks, stuns VMAs crowd. CNN. Available online at https://edition.cnn.com/2013/08/26/showbiz/music/miley-cyrus-mtv-vmas-gaga/index.html (accessed June 16, 2020)
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Brewer, N. T., Weinstein, N. D., Cuite, C. L., & Herrington, J. E. (2004). Risk perceptions and their relation to risk behavior. Annals of behavioral medicine, 27(2), 125-130.
Brewer, P. R., Young, D. G., & Morreale, M. (2013). The impact of real news about “fake news”: Intertextual processes and political satire. International journal of public opinion research, 25(3), 323-343.
Cambridge, U. (2020). Cambridge advanced learner′s dictionary & thesaurus.
Carpenter, S. (2010). A study of content diversity in online citizen journalism and online newspaper articles. New media & society, 12(7), 1064-1084.
Carr, C. T., & Hayes, R. A. (2015). Social media: Defining, developing, and divining. Atlantic journal of communication, 23(1), 46-65.
Constine, J. (2020). Facebook Deletes Brazil President’s Coronavirus Misinfo Post. Tech Crunch. Available online at https://techcrunch.com/2020/03/30/facebook-removes-bolsonaro-video/ (accessed June 16, 2020)
Cook, J., Van Der Linden, S., Lewandowsky, S., & Ecker, U. K. (2020). Coronavirus, Plandemic and the seven traits of conspiratorial thinking. Available online at https://theconversation.com/coronavirus-plandemic-and-the-seven-traits-of-conspiratorial-thinking-138483 (accessed June 16, 2020)
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
Deziel, M. (2014). Women inmates: Why the male model doesn’t work. The New York Times. Available online at
https://www.nytimes.com/paidpost/netflix/women-inmates-separate-but-not- equal.html (accessed June 16, 2020)
Elhadad, M. K., Li, K. F., & Gebali, F. (2020). Detecting misleading information on covid-19. Ieee access, 8, 165201-165215.
Gao, Z., Yada, S., Wakamiya, S., & Aramaki, E. (2020). Naist covid: Multilingual covid-19 twitter and weibo dataset. arXiv preprint arXiv:2004.08145.
Geleris, J., Sun, Y., Platt, J., Zucker, J., Baldwin, M., Hripcsak, G., Labella, A., Manson, D. K., Kubin, C., & Barr, R. G. (2020). Observational study of hydroxychloroquine in hospitalized patients with Covid-19. New england journal of medicine, 382(25), 2411-2418.
Gelfert, A. (2018). Fake news: A definition. Informal logic, 38(1), 84-117.
goto456. (2020). 百度停用词表 Available online at https://github.com/goto456/stopwords (accessed June 16, 2020)
Imhoff, R., & Lamberty, P. (2020). A bioweapon or a hoax? The link between distinct conspiracy beliefs about the Coronavirus disease (COVID-19) outbreak and pandemic behavior. Social psychological and personality science, 11(8), 1110-1118.
Islam, M. S., Sarkar, T., Khan, S. H., Kamal, A.-H. M., Hasan, S. M., Kabir, A., Yeasmin, D., Islam, M. A., Chowdhury, K. I. A., & Anwar, K. S. (2020). COVID-19–related infodemic and its impact on public health: A global social media analysis. The American journal of tropical medicine and hygiene, 103(4), 1621.
Jamieson, K. H., & Cappella, J. N. (2008). Echo chamber: Rush Limbaugh and the conservative media establishment. Oxford University Press.
Jang, Y., Park, C. H., & Seo, Y. S. (2019). Fake news analysis modeling using quote retweet. Electronics, 8(12), 1377.
Jin, Z., Cao, J., Zhang, Y., & Luo, J. (2016). News verification by exploiting conflicting social viewpoints in microblogs. In Proceedings of the AAAI conference on artificial intelligence 30(1)
Kar, D., Bhardwaj, M., Samanta, S., & Azad, A. P. (2020). No rumours please! a multi-indic-lingual approach for COVID fake-tweet detection. In 2021 Grace Hopper Celebration India (GHCI) (pp. 1-5). IEEE.
Kim, Y. (2019). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., & Rothschild, D. (2018). The science of fake news. Science, 359(6380), 1094-1096.
Leung, K. M. (2007). I bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 123-156.
Levy, N. (2017). The bad news about fake news. Social epistemology review and reply collective, 6(8), 20-36.
Maheshwari, S. (2016). How fake news goes viral: A Case Study, The New York Times. Available online at https://www.nytimes.com/2016/11/20/business/media/how-fake-news-spreads.html (accessed June 16, 2020)
Mahlous, A. R., & Al-Laith, A. (2021). Fake news detection in Arabic tweets during the COVID-19 pandemic. International journal of advanced computer science and applications, 12(6).
Mitchell, A., & Oliphant, J. B. (2020). Americans immersed in COVID-19 news; most think media are doing fairly well covering it. Pew research center. Available online at https://www.pewresearch.org/journalism/2020/03/18/americans-immersed-in-covid-19-news-most-think-media-are-doing-fairly-well-covering-it/ (accessed June 16, 2020)
Niu, M., Li, Y., Wang, C., & Han, K. (2018). RFAmyloid: a web server for predicting amyloid proteins. International journal of molecular sciences, 19(7), 2071.
Onion, T. (2013). Let me explain why Miley Cyrus’ VMA performance was our top story this morning. The Onion. Available online at https://www.theonion.com/let-me-explain-why-miley-cyrus-vma-performance-was-our-1819584893 access date (accessed June 16, 2020)
Onion, T. (2017). About the Onion. The Onion. Available online at
https://www.theonion.com/the-onion-is-the-world-s-leading-news- publication-offe-1819653457 (accessed June 16, 2020)
Paka, W. S., Bansal, R., Kaushik, A., Sengupta, S., & Chakraborty, T. (2021). Cross-SEAN: A cross-stitch semi-supervised neural attention model for COVID-19 fake news detection. Applied soft computing, 107, 107393.
Patwa, P., Sharma, S., Pykl, S., Guptha, V., Kumari, G., Akhtar, M. S., Ekbal, A., Das, A., & Chakraborty, T. (2021). Fighting an infodemic: Covid-19 fake news dataset. In International workshop on combating online hostile posts in regional languages during emergency situation.(pp. 21-29).
Paul, C., & Matthews, M. (2016). The Russian “firehose of falsehood” propaganda model. Rand corporation, 2(7), 1-10.
Quattrociocchi, W., Scala, A., & Sunstein, C. R. (2016). Echo chambers on Facebook. Available at SSRN 2795110.
Sanders, L. (2020). The difference between what Republicans and Democrats believe to be true about COVID-19. Available online at: https://today.yougov.com/topics/politics/articles-reports/2020/05/26/republicans-democrats-misinformation (accessed June 16, 2020)
Serrano, J. C. M., Papakyriakopoulos, O., & Hegelich, S. (2020). NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020.
Shearer, E. (2018). Social media outpaces print newspapers in the US as a news source. Pew research center, 10, 12.
Shu, K., Cui, L., Wang, S., Lee, D., & Liu, H. (2019, July). defend: Explainable fake news detection. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 395-405).
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2018). Fakenewsnet: A data repository with news content, social context and spatialtemporal information for studying fake news on social media. arXiv preprint arXiv:1809.01286.
Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
Shu, K., Zhou, X., Wang, S., Zafarani, R., & Liu, H. (2019, August). The role of user profiles for fake news detection. In Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 436-439).
Steenkamp, M., & Hyde-Clarke, N. (2014). The use of Facebook for political commentary in South Africa. Telematics and informatics, 31(1), 91-97.
Su, Z., McDonnell, D., Wen, J., Kozak, M., Abbas, J., Šegalo, S., Li, X., Ahmad, J., Cheshmehzangi, A., & Cai, Y. (2021). Mental health consequences of COVID-19 media coverage: the need for effective crisis communication practices. Globalization and health, 17(1), 1-8.
Subramanian, S. (2017). Inside the Macedonian fake-news complex. Wired magazine, 15.
Talwar, S., Dhir, A., Kaur, P., Zafar, N., & Alrasheedy, M. (2019). Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. Journal of retailing and consumer services, 51, 72-82.
Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153.
Tankovska, H. (2021). Number of social media users worldwide from 2018 to 2027. Available online at https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (accessed June 16, 2020)
Ullah, A. R., Das, A., Das, A., Kabir, M. A., & Shu, K. (2021). A survey of COVID-19 misinformation: datasets, detection techniques and open issues. arXiv preprint arXiv:2110.00737.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., ... & Gao, J. (2018, July). Eann: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining (pp. 849-857)
Waisanen, D. J. (2011). Crafting hyperreal spaces for comic insights: The Onion News Network′s ironic iconicity. Communication Quarterly, 59(5), 508-528.
Witten, I. H., Frank, E., Hall, M. A., Pal, C. J., & DATA, M. (2005). Practical machine learning tools and techniques. In DATA MINING, 2(4).
Wright, R. E. (1995). Logistic regression. Reading and understanding multivariate statistics, 217–244.
Xiong, J., Lipsitz, O., Nasri, F., Lui, L. M., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Ho, R., & Majeed, A. (2020). Impact of COVID-19 pandemic on mental health in the general population: A systematic review. Journal of affective disorders, 227, 55-64
Yamey, G., & Gonsalves, G. (2020). Donald Trump: a political determinant of covid-19. British Medical Journal, 369 .
Yang, C., Zhou, X., & Zafarani, R. (2021). CHECKED: Chinese COVID-19 fake news dataset. Social network analysis and mining, 11(1), 1-8.
Zarocostas, J. (2020). How to fight an infodemic. The lancet, 395(10225), 676.
Zubiaga, A., & Ji, H. (2014). Tweet, but verify: epistemic study of information verification on twitter. Social network analysis and mining, 4(1), 1-12.
Zhao, Z., Zhao, J., Sano, Y., Levy, O., Takayasu, H., Takayasu, M., ... & Havlin, S. (2020). Fake news propagates differently from real news even at early stages of spreading. EPJ data science, 9(1), 7. |