參考文獻 |
1.Ye (2019) 维度規約(降维)算法在WEKA中應用,檢自
<http://tecdat.cn/%e7%bb%b4%e5%ba%a6%e8%a7%84%e7%ba%a6%ef%bc%88%e9%99%8d%e7%bb%b4%ef%bc%89%e7%ae%97%e6%b3%95%e5%9c%a8weka%e4%b8%ad%e5%ba%94%e7%94%a8/>
2.Bian, J., Wang, L., Scherer, R., Woźniak, M., Zhang, P., & Wei, W. (2021). Abnormal detection of electricity consumption of user based on particle swarm optimization and long short term memory with the attention mechanism. IEEE Access, 9, 47252-47265.
3.Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450.
4.Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
5.Compare, M., Baraldi, P., & Zio, E. (2019). Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet of Things Journal, 7(5), 4585-4597.
6.DeLima, T. F., Shastri, B. J., Tait, A. N., Nahmias, M. A., & Prucnal, P. R. (2017). Progress in neuromorphic photonics. Nanophotonics, 6(3), 577-599.
7.Du, B., He, Y., An, B., & Zhang, C. (2020). Remaining useful performance estimation for complex analog circuit based on maximal information coefficient and bidirectional gate recurrent unit. IEEE Access, 8, 102449-102466..
8.Ejaz, M. S., Islam, M. R., Sifatullah, M., & Sarker, A. (2019). Implementation of principal component analysis on masked and non-masked face recognition. Paper presented at the 1st international conference on advances in science, engineering and robotics technology (ICASERT), Dhaka, Bangladesh.
9.Fei, J., Wang, H., & Hua, M. (2020). Double-Hidden-Layer Recurrent Neural Network Fractional-Order Sliding Mode Control of Shunt Active Power Filter. IFAC-PapersOnLine, 53(2), 6232-6237.
10.Framework for Complex Engineered Systems. IEEE Sensors Journal, 21(18), 20421-20430.
11.Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. Paper presented at the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China.
12.Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
13.Hota, H. S., Handa, R., & Shrivas, A. K. (2017). Time series data prediction using sliding window based RBF neural network. International Journal of Computational Intelligence Research, 13(5), 1145-1156.
14.Jiang, M., Fu, G., Wang, D., & Zhang, D. (2015). Using failure analysis techniques to identify key information of PHM, Prognostics and System Health Management Conference (PHM). IEEE, 1-4.
15.Kalgren, P. W., Byington, C. S., Roemer, M. J., & Watson, M. J. (2006). Defining PHM, a lexical evolution of maintenance and logistics. IEEE Autotestcon, 353-358.
16.Khelifi, L., & Mignotte, M. (2020). Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access, 8, 126385-126400.
17.Kostadinov. (2017). Understanding GRU Networks. Retrieved from < https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be>
18.Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
19.Kumar, A., Shankar, R., & Thakur, L. S. (2018). A big data driven sustainable manufacturing framework for condition-based maintenance prediction. Journal of computational science, 27, 428-439.
20.Kwon, D., Hodkiewicz, M. R., Fan, J., Shibutani, T., & Pecht, M. G. (2016). IoT-based prognostics and systems health management for industrial applications. IEEE Access, 4, 3659-3670.
21.Liu, J., Wang, W., Ma, F., Yang, Y. B., & Yang, C. S. (2012). A data-model-fusion prognostic framework for dynamic system state forecasting. Engineering Applications of Artificial Intelligence, 25(4), 814-823.
22.Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2019). On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265.
23.Liu, W., Qin, C., Gao, K., Li, H., Qin, Z., Cao, Y., & Si, W. (2019). Research on medical data feature extraction and intelligent recognition technology based on convolutional neural network. IEEE Access, 7, 150157-150167.
24.Li, Y., Zou, L., Jiang, L., & Zhou, X. (2019). Fault diagnosis of rotating machinery based on combination of deep belief network and one-dimensional convolutional neural network. IEEE Access, 7, 165710-165723.
25.Ortiz Laguna, J., Olaya, A. G., & Borrajo, D. (2011). A dynamic sliding window approach for activity recognition. In international conference on user modeling, adaptation, and personalization. Springer, Berlin, Heidelberg.
26.Pavithra, M., Saruladha, K., & Sathyabama, K. (2019). GRU based deep learning model for prognosis prediction of disease progression. Paper presented at the 3rd International Conference on Computing Methodologies and Communication(ICCMC), Erode, India.
27.Pereira, F. C., & Borysov, S. S. (2019). Machine learning fundamentals. In Mobility Patterns, Big Data and Transport Analytics. Elsevier, 9-29.
28.Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572.
29.Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
30.Sehovac, L., & Grolinger, K. (2020). Deep learning for load forecasting: Sequence to sequence recurrent neural networks with attention. IEEE Access, 8, 36411-36426.
31.Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. towards data science, 6(12), 310-316.
32.Shewalkar, A. N. (2018). Comparison of rnn, lstm and gru on speech recognition data.
33.Sui, X., Wu, Q., Liu, J., Chen, Q., & Gu, G. (2020). A review of optical neural networks. IEEE Access, 8, 70773-70783.
34.Tao, Y., Wang, X., Sánchez, R. V., Yang, S., & Bai, Y. (2019). Spur gear fault diagnosis using a multilayer gated recurrent unit approach with vibration signal. IEEE Access, 7, 56880-56889.
35.Vichare, N. M., & Pecht, M. G. (2006). Prognostics and health management of electronics. IEEE transactions on components and packaging technologies, 29(1), 222-229.
36.Wang, Y., Jiang, K., & Xu, L. (2021). Sensor-Data-Driven Fusion Prognostic
37.Wrught. (2019). New Deep Learning Optimizer, Ranger: Synergistic combination of RAdam + LookAhead for the best of both.
Retrieved from < https://lessw.medium.com/new-deep-learning-optimizer-ranger-synergistic-combination-of-radam-lookahead-for-the-best-of-2dc83f79a48d >
38.Yan, J., Meng, Y., Lu, L., & Guo, C. (2017). Big-data-driven based intelligent prognostics scheme in industry 4.0 environment. Paper presented at the Prognostics and System Health Management Conference (PHM), Harbin, China.
39.Yang, R., Feng, L., Wang, H., Yao, J., & Luo, S. (2020). Parallel recurrent convolutional neural networks-based music genre classification method for mobile devices. IEEE Access, 8, 19629-19637.
40.Yang, S., Yu, X., & Zhou, Y. (2020). Lstm and gru neural network performance comparison study: Taking yelp review dataset as an example. Paper presented at the International workshop on electronic communication and artificial intelligence (IWECAI), Shanghai, China.
41.Yang, X., Chen, J., & Moon, Y. S. (2010). Restoration of low resolution car plate images using PCA based image super-resolution. Paper presented at the IEEE International Conference on Image Processing, Dallas, TX, USA.
42.Ye, J., Zhao, J., Ye, K., & Xu, C. (2020). How to build a graph-based deep learning architecture in traffic domain: A survey. IEEE Transactions on Intelligent Transportation Systems.
43.Yu, Y., Zhu, Y., Li, S., & Wan, D. (2014). Time series outlier detection based on sliding window prediction. Mathematical problems in Engineering, 2014.
44.Zhang, M., Lucas, J., Ba, J., & Hinton, G. E. (2019). Lookahead optimizer: k steps forward, 1 step back. Advances in Neural Information Processing Systems, 32.
45.Zhang, P., Yang, L., & Li, D. (2020). EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment. Computers and Electronics in Agriculture, 176, 105652. |