博碩士論文 109453018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.138.120.112
姓名 蕭巧芸(Chiao-Yun Hsiao)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 國內旅遊景氣動向與疫情變化預測房價研究
(The Impact of Tourism and COVID-19 pandemic on the Real Estate Market)
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 應用卷積式神經網路建立肝臟超音波影像輔助判別模型★ 基於卷積神經網路之身分識別系統
★ 能源管理系統電能補值方法誤差率比較分析★ 企業員工情感分析與管理系統之研發
★ 資料淨化於類別不平衡問題: 機器學習觀點★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 2019年開始因為嚴重特殊傳染性肺炎影響,國與國之間開始限制出入境人數,導致全球的旅遊活動紛紛暫停,儘管有些地區疫情趨緩,也變成以「旅遊泡泡」的特殊方式方能進行交流,並僅開放部分人士出入境。
台灣是一個比起其他國家民眾更喜歡將房地產交易視為投資的地方,是否旅遊相關的因子真的能夠影響房價,進而推動不動產價格的變化,從一個較少人討論過的觀點切入這些要素影響房價的準確度,因近年來疫情影響而更值得討論。故想以國內變化為主,利用近幾年國內不同地區觀光相關的景點人數,與此次疫情染疫人數,和各縣市房價因子做資料探勘。
「食、衣、住、行、育、樂」皆為民生之本,安排旅遊已經變成台灣人中生活的小確幸,因而本研究採取六大民生事項之一:樂,較貼近人們生活中會注意到的旅遊業景氣變化一同作為房價變化預測的變數,觀察與探討由旅遊業的景氣變化預測房價的準確率,當民眾生活中有遇到相關旅遊景點人數的變化,能夠將變化納入投資房市的參考之一。
本研究利用房地產本身因子加上旅遊與疫情人數變化,透過資料探勘比較與不同的演算法預測房價預測的準確結果。以不同的回歸演算法預測,包含決策樹、支持向量機、隨機森林、類神經網路,期望本研究預測結果能作為較無經驗的購屋者搭配生活周遭變化作為買房參考。
摘要(英) Beginning in 2019, the COVID-19 pandemic caused a global halt to travel activities due to countries began restricting entry and exit. Even some regions saw a decline in COVID cases, travel bubbles were established as a way to facilitate communication, though, only certain individuals were permitted to enter and exit.

As Taiwan is an island nation, the tourism industry has a significant impact of the country′s income. Despite the restrictions on the tourism industry, the real estate industry has been thriving in recent years, with soaring property prices. The government has even had to introduce anti-housing speculation policies, and some have suggested that people are buying homes because they have nowhere else to put their money.

Taiwan is a place where people often invest in real estate, and it is worth considering whether tourism-related factors can truly affect property prices and be capitalized on in the real estate market. With the recent pandemic′s impact, this topic is more pertinent than ever. Therefore, this study focuses on domestic changes, and examines the factors of the number of visitors to various tourist attractions, the number of individuals infected with the virus, and housing prices in different regions of Taiwan in recent years.

"Food, clothing, housing, transportation, education, and entertainment" are all the foundations of people′s livelihood and arranging travel has become one of the little things that Taiwanese people enjoy. Therefore, this study focuses on one of the six major livelihood issues: entertainment. Taking the changes in the prosperity of the tourism industry that are closer to people′s lives as the variables for predicting changes in house prices. Observing and discussing the accuracy of predicting housing prices from the prosperity changes of the Tourism Industry. When people encounter changes in the number of visitors to various tourist attractions, they can incorporate the changes into one of their references for investing in the real estate market.

This study uses the construction factors of the real estate itself and the changes in the number of tourists and epidemics to compare and predict the accurate results of different algorithms for predicting housing prices. Using various regression algorithms, including decision trees, support vector machines, random forests, and artificial neural networks. It is hoped that the prediction results of this study can be used as a reference for inexperienced house buyers to refer to the changes in their lives when buying a property.
關鍵字(中) ★ 國內旅遊景點變化
★ 疫情變化
★ 房價預測
★ 資料探勘
關鍵字(英) ★ domestic tourist attractions
★ pandemic changes
★ housing price prediction
★ data mining
論文目次 第一章 緒論 - 1 -
1.1 研究背景 - 1 -
1.2 研究動機 - 2 -
1.3 研究目的 - 3 -
1.4 研究流程 - 4 -
第二章 文獻探討 - 6 -
2.1 房地產本身因素探討 - 6 -
2.2 旅遊人數與疫情人數變化因素討論 - 7 -
2.3 預測模型 - 10 -
第三章 研究方法 - 13 -
3.1 資料來源 - 13 -
3.2 資料預處理 - 17 -
3.3 研究設計 - 18 -
3.4 資料驗證與評估指標 - 21 -
第四章 實驗結果 - 23 -
4.1 實驗結果 - 23 -
4.2 實驗小結 - 53 -
第五章 結論與建議 - 55 -
5.1 研究結論與貢獻 - 55 -
5.2 研究限制 - 56 -
5.3 未來研究建議 - 56 -
第六章 參考文獻 - 57 -
6.1 中文參考文獻 - 57 -
6.2 英文參考文獻 - 58 -
參考文獻 中文參考文獻
1. 蔡佩蓉. (2014, 一月 20). 台灣房價史/2000年以來低利率、政府作多「最美好的投機時代」. https://news.housefun.com.tw/news/article/11713753073.html
2. 東森新聞. (2022, 八月 30). 可以出國玩「沒人要存錢買房了」?他嘆:一趟差10萬. https://tw.news.yahoo.com/news/可以出國玩-沒人要存錢買房了-他嘆-趟差10萬-015700555.html
3. 黃惠芬. (2017). 以類神經網路方法建構房價估價模型—以高雄市實價登錄資料為例. 國立高雄應用科技大學學位論文. https://hdl.handle.net/11296/2k9yv5
4. 李維平, 賴錦慧, 劉學維, 林昱彤, & 廖玟柔. (2017). 整合市場比較法與資料探勘技術之房價預測模型. 先進工程學刊, 12(3), 141–149.
5. 馬成文, 方旭, & 胡星辰. (2019). 旅游業發展會提高房價嗎?——基于海南的實證分析. 重慶工商大學學報: 社會科學版, 5, 47–53.
6. 毛麗琴. (2009). 房屋價格預測模型分析-以高雄市區爲例. 商業現代化學刊, 5(1). https://doi.org/10.6132/JCM.2009.5.1.03
7. 綜合規劃處. (2015, 七月 15). 政府資料開放簡介. https://www.ocac.gov.tw/OCAC/file/attach/98479/file_40668.pdf

英文參考文獻
1. Alfaro-Navarro, J.-L., Cano, E. L., Alfaro-Cortés, E., García, N., Gámez, M., & Larraz, B. (2020). A Fully Automated Adjustment of Ensemble Methods in Machine Learning for Modeling Complex Real Estate Systems. Complexity, 2020, 1–12. https://doi.org/10.1155/2020/5287263
2. Ho, W. K. O., Tang, B.-S., & Wong, S. W. (2021). Predicting property prices with machine learning algorithms. Journal of Property Research, 38(1), 48–70. https://doi.org/10.1080/09599916.2020.1832558
3. Jiachen Cheng, Yuchong Wang, An Xu, Nianci Xia, & Tianze Yao. (2021). The COVID-19 Effect on Chinese Real Estate Market. Frontiers in Economics and Management, 2(2). https://doi.org/10.6981/FEM.202102_2(2).0009
4. Liu, K., Wang, Y., & Lin, L. (2020). Will Tourism Development Increase Housing Prices?
5. Ni, Y. (2022). A housing price prediction method based on neural network. 2022 International Conference on Big Data, Information and Computer Network (BDICN), 592–595. https://doi.org/10.1109/BDICN55575.2022.00114
6. Niccolò Battistini, Matteo Falagiarda, Johannes Gareis, Angelina Hackmann, & Moreno Roma. (2021). The euro area housing market during the COVID-19 pandemic. Copyright 2023, European Central Bank. https://www.ecb.europa.eu/pub/economic-bulletin/articles/2021/html/ecb.ebart202107_03~36493e7b67.en.html
7. Saira Khalil ur Rehman. (2020). The Impact of Tourism on the Real Estate Market: The Case of the World’s Leading Tourism Destination.
8. Wang, B. (2021). How Does COVID-19 Affect House Prices? A Cross-City Analysis. Journal of Risk and Financial Management, 14(2), 47. https://doi.org/10.3390/jrfm14020047
9. Zhang, Q. (2021). Housing Price Prediction Based on Multiple Linear Regression. Scientific Programming, 2021, 1–9. https://doi.org/10.1155/2021/7678931
10. Zhao, Y. (2020). US housing market during COVID-19: Aggregate and distributional evidence.
指導教授 蔡志豐 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明