參考文獻 |
[1] 莊維荃. (2017). 網路評論影響你的購買決定? [國立中央大學]. In 資訊管理學系: Vol. 碩士. https://hdl.handle.net/11296/ycweg5
[2] 蔡孟穎. (2018). 預測線上評論的幫助性:誰是關鍵評論者? [國立臺灣科技大學]. In 管理學院MBA: Vol. 碩士. https://hdl.handle.net/11296/qr3jr7
[3] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. ArXiv:1607.04606 [Cs]. http://arxiv.org/abs/1607.04606
[4] Chen, P., Sun, Z., Bing, L., & Yang, W. (2017). Recurrent Attention Network on Memory for Aspect Sentiment Analysis. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 452–461. https://doi.org/10.18653/v1/D17-1047
[5] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language Processing (almost) from Scratch. ArXiv:1103.0398 [Cs]. http://arxiv.org/abs/1103.0398
[6] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
[7] Fan, C., Gao, Q., Du, J., Gui, L., Xu, R., & Wong, K.-F. (2018). Convolution-based Memory Network for Aspect-based Sentiment Analysis. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 1161–1164. https://doi.org/10.1145/3209978.3210115
[8] Fan, F., Feng, Y., & Zhao, D. (2018). Multi-grained Attention Network for Aspect-Level Sentiment Classification. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 3433–3442. https://doi.org/10.18653/v1/D18-1380
[9] Gallicchio, C., & Micheli, A. (2010). Graph Echo State Networks. The 2010 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN.2010.5596796
[10] He, R., Lee, W. S., Ng, H. T., & Dahlmeier, D. (2018a). Exploiting Document Knowledge for Aspect-level Sentiment Classification. ArXiv:1806.04346 [Cs]. http://arxiv.org/abs/1806.04346
[11] He, R., Lee, W. S., Ng, H. T., & Dahlmeier, D. (2018b). Effective Attention Modeling for Aspect-Level Sentiment Classification. Proceedings of the 27th International Conference on Computational Linguistics, 1121–1131. https://aclanthology.org/C18-1096
[12] Hongjie, C., Tu, Y., Zhou, X., Yu, J., & Xia, R. (2020). Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network. 833–843. https://doi.org/10.18653/v1/2020.coling-main.72
[13] Hussein, D. M. E.-D. M. (2018). A survey on sentiment analysis challenges. Journal of King Saud University - Engineering Sciences, 30(4), 330–338. https://doi.org/10.1016/j.jksues.2016.04.002
[14] Indurkhya, N., & Damerau, F. J. (2010). Handbook of natural language processing, second edition (p. 679). Scopus.
[15] Jiang, D., Luo, X., Xuan, J., & Xu, Z. (2017). Sentiment Computing for the News Event Based on the Social Media Big Data. IEEE Access, 5, 2373–2382. https://doi.org/10.1109/ACCESS.2016.2607218
[16] Li, X., Bing, L., Lam, W., & Shi, B. (2018). Transformation Networks for Target-Oriented Sentiment Classification. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 946–956. https://doi.org/10.18653/v1/P18-1087
[17] Liu, B., & Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In C. C. Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 415–463). Springer US. https://doi.org/10.1007/978-1-4614-3223-4_13
[18] Lu, Q., Zhu, Z., z f, Xu, F., Zhang, D., Wu, W., & Guo, Q. (2020). Bi-GRU Sentiment Classification for Chinese Based on Grammar Rules and BERT. International Journal of Computational Intelligence Systems, 13, 538. https://doi.org/10.2991/ijcis.d.200423.001
[19] Ma, D., Li, S., Zhang, X., & Wang, H. (2017). Interactive attention networks for aspect-level sentiment classification. Proceedings of the 26th International Joint Conference on Artificial Intelligence, 4068–4074.
[20] Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16–32. https://doi.org/10.1016/j.cosrev.2017.10.002
[21] Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
[22] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781
[23] Peng, H., Ma, Y., Li, Y., & Cambria, E. (2018). Learning multi-grained aspect target sequence for Chinese sentiment analysis. Knowledge-Based Systems, 148, 167–176. https://doi.org/10.1016/j.knosys.2018.02.034
[24] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. ArXiv:1802.05365 [Cs]. http://arxiv.org/abs/1802.05365
[25] Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813–830. https://doi.org/10.1109/TKDE.2015.2485209
[26] Shan, Y., Zhong, Z., Che, C., Jin, B., & Wei, X. (2021). Aspect-Level Sentiment Classification of Chinese Patient Comments Based on Pre-trained Sentiment Embedding. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1503–1508. https://doi.org/10.1109/BIBM52615.2021.9669595
[27] Song, Y., Wang, J., Jiang, T., Liu, Z., & Rao, Y. (2019). Attentional Encoder Network for Targeted Sentiment Classification. ArXiv:1902.09314 [Cs], 11730, 93–103. https://doi.org/10.1007/978-3-030-30490-4_9
[28] Tang, D., Qin, B., & Liu, T. (2016). Aspect Level Sentiment Classification with Deep Memory Network. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 214–224. https://doi.org/10.18653/v1/D16-1021
[29] Tang, H., Tan, S., & Cheng, X. (2009). A survey on sentiment detection of reviews. Expert Systems with Applications: An International Journal, 36(7), 10760–10773. https://doi.org/10.1016/j.eswa.2009.02.063
[30] Tubishat, M., Idris, N., & Abushariah, M. A. M. (2018). Implicit aspect extraction in sentiment analysis: Review, taxonomy, oppportunities, and open challenges. Information Processing & Management, 54(4), 545–563. https://doi.org/10.1016/j.ipm.2018.03.008
[31] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. ArXiv:1706.03762 [Cs]. http://arxiv.org/abs/1706.03762
[32] Wang, K., Shen, W., Yang, Y., Quan, X., & Wang, R. (2020). Relational Graph Attention Network for Aspect-based Sentiment Analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3229–3238. https://doi.org/10.18653/v1/2020.acl-main.295
[33] Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016). Attention-based LSTM for Aspect-level Sentiment Classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 606–615. https://doi.org/10.18653/v1/D16-1058
[34] Wang, Y., You, Z.-H., Yang, S., Li, X., Jiang, T.-H., & Zhou, X. (2019). A High Efficient Biological Language Model for Predicting Protein–Protein Interactions. Cells, 8(2), 122. https://doi.org/10.3390/cells8020122
[35] Xu, H., Liu, B., Shu, L., & Yu, P. (2019). BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2324–2335. https://doi.org/10.18653/v1/N19-1242
[36] Yang, H., Zeng, B., Yang, J., Song, Y., & Xu, R. (2021). A multi-task learning model for Chinese-oriented aspect polarity classification and aspect term extraction. Neurocomputing, 419, 344–356. https://doi.org/10.1016/j.neucom.2020.08.001
[37] Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), e1253. https://doi.org/10.1002/widm.1253 |