博碩士論文 109521005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.141.201.209
姓名 陳琮元(Tsung-Yuan Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器
(A Design of Noise-Shaping ADC for Optical Coupling Isolation Applications)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 以正交分頻多工系統之同步的高效能內插法技術
★ 正交分頻多工通訊中之盲目頻域等化器★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技的發展現在正處於第四次工業革命,即工業4.0。主要著重於互聯性、自動化、機械學習和實時數據等方面。透過智慧技術、演算法和控制機械等實體設備為自動化監控和分析技術帶來革新。在近年來的工業控制產品,如交流伺服馬達控制器,工業自動化逆變器,用於再生能源的功率調節器,都需要更高的效率與精度。在工業設備中,精確測量來自物理傳感器的信號是控制系統的關鍵部分,從測量方面來看,不僅需要最大的精度且還需要確保安全性與可靠性,工業控制系統通常在危險的電壓下運行,因而廣泛需要隔離器來保護人員和相鄰的電子設備。本電路以高精準度、低功耗為目標對隔離器中的類比數位轉換器進行設計。
本論文實現應用於光耦合隔離系統之發送端類比數位轉換器,對於應用分為三角積分類比數位轉換器(Sigma-Delta ADC)與雜訊整形連續近似類比數位轉換器(Noise-Shaping Successive Approximation ADC,NS-SAR ADC)兩種類比數位轉換器,三角積分類比數位轉換器主要由三角積分調變器(Sigma-Delta Modulator, SDM)與數位降頻率波器組成,而雜訊整形連續近似類比數位轉換器以三角積分調變器轉換技術為基礎,其特性為在轉換過程中使用雜訊整形(Noise-Shaping)技術,以提高轉換精準度並降低功耗。
本電路採用台積電0.18μm CMOS 1P6M製程,晶片面積分別約佔0.556 mm2與1.291 mm2,電源供應電壓分別為1.8V與1.2V,整體電路功耗分別為4.58 mW與317 μW,電路頻寬分別為40 kHz與200 kHz,電路採樣頻率分別為20.48 MHz與3.2 MHz。都以開關電容架構下實現解析度為12 位元。
摘要(英) With the development of technology, we are currently in the midst of the Fourth Industrial Revolution, known as Industry 4.0. It primarily focuses on aspects such as interconnectivity, automation, machine learning, and real-time data. Innovations in automation monitoring and analysis technologies are brought about through smart technologies, algorithms, and control mechanisms for physical equipment. In recent years, industrial control products such as AC servo motor controllers, industrial automation inverters, and power regulators for renewable energy require higher efficiency and precision. In industrial equipment, precise measurement from physical sensors is a crucial part of control systems. From a measurement perspective, not only the maximum accuracy is required, but also safety and reliability must be ensured. Industrial control systems typically operate under hazardous voltages, necessitating the widespread use of isolators to protect personnel and adjacent electronic equipment. This circuit aims to design analog-to-digital converters in isolators with high precision and low power consumption.
This paper implements analog-to-digital converters (ADCs) for use in optically coupled isolation systems at the transmitter end. For applications, it is divided into two types of ADCs: Sigma-Delta ADCs and Noise-Shaping Successive Approximation ADCs (NS-SAR ADCs). Sigma-Delta ADCs are mainly composed of Sigma-Delta modulators (SDMs) and digital decimation filters, while NS-SAR ADCs are based on Sigma-Delta modulation technology. Their characteristic lies in the use of noise-shaping techniques during the conversion process to improve conversion accuracy and reduce power consumption.
This circuit is implemented using TSMC′s 0.18μm CMOS 1P6M process, with chip areas approximately 0.556 mm2 and 1.291 mm2 respectively. The power supply voltages are 1.8V and 1.2V, with overall circuit power consumption of 4.58 mW and 317 μW respectively. The circuit bandwidths are 40 kHz and 200 kHz, and the circuit sampling frequencies are 20.48 MHz and 3.2 MHz respectively. A 12-bit resolution is achieved using a switched capacitor architecture.
關鍵字(中) ★ 類比轉數位轉換器
★ 連續近似類比數位轉換器
★ 雜訊整形
★ 浮動逆變放大器
關鍵字(英)
論文目次 第一章 緒論. 1
1.1 背景 1
1.2 研究動機 2
1.3 論文貢獻 4
第二章 三角積分調變器原理概論. 5
2.1 奈奎斯特與超取樣類比數位轉換器. 5
2.2 量化誤差 7
2.3 超取樣與雜訊整形技術 9
2.3.1 超取樣技術 9
2.3.2 雜訊整形. 11
2.4 一階三角積分調變器 13
2.5 二階三角積分調變器 14
2.6 高階三角積分調變器 15
第三章 連續近似類比數位轉換器概論 17
3.1 連續近似類比數位轉換器基本架構 17
3.2 數位類比轉換器能量耗損分析. 19
3.2.1 取樣保持階段能量耗損分析 19
3.2.2 電荷重新分佈階段能量耗損分析 21
第四章 類比數位轉換器設計與模擬. 25
4.1 三角積分調變器. 25
4.1.1 三角積分調變器規格訂製 25
4.1.2 三角積分調變器系統設計 25
4.1.3 電路系統非理想效應考量 27
4.1.4 電路設計. 33
4.1.5 佈局前模擬結果. 41
4.2 雜訊整形連續近似類比數位轉換器 45
4.2.1 雜訊整形連續近似類比數位轉換器規格訂製. 45
4.2.2 雜訊整形連續近似類比數位轉換器系統設計. 46
4.2.3 電路設計. 48
4.2.4 佈局前模擬結果. 60
第五章 佈局考量與量測 64
5.1 三角積分調變器. 64
5.1.1 佈局平面圖 64
5.1.2 佈局後模擬結果. 65
5.1.3 量測規劃. 67
5.1.4 量測結果. 69
5.2 雜訊整形連續近似類比數位轉換器 71
5.2.1 佈局平面圖 71
5.1.2 佈局後模擬結果. 73
5.1.3 量測規劃. 75
第六章 結論與未來展望 76
6.1 文獻比較. 76
6.1.1 三角積分調變器. 76
6.1.2 雜訊整形連續近似類比數位轉換器 76
6.2 未來展望. 77
參考文獻 78
參考文獻 [1] " TLP7820/7920 Data Sheet." Toshiba https://toshiba.semicon-storage.com/info/docget.jsp?did=68559
[2] L. Qian and S. Diao, "A 112dB SNDR Delta-Sigma Modulator for Low-Power Audio Applications," 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2021, pp. 1-5.
[3] M.-C. Huang and S.-l. Liu, "A Fully Differential Comparator-Based Switched-Capacitor ∆Σ Modulator," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 369-373, May 2009.
[4] A. S. Kozlov and M. M. Pilipko, "A Second-order Sigma-delta Modulator with a Hybrid Topology in 180nm CMOS," 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2020, pp. 144-146.
[5] Tsung-Sum Lee, Wen-Bin Lin and Dung-Lin Lee, "Design techniques for micropower low-voltage CMOS switched-capacitor delta-sigma modulator," The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS ′04., 2004, pp. iii-331.
[6] A.Ahmadpourr, P. Torkzadeh, "An Enhanced Bulk-Driven Folded-Cascode Amplifier in 0.18 μm CMOS Technology," Circuits and Systems, 2012, 3,pp. 187-191.
[7] S. A. Enche Ab Rahim, M. A. Ismail, A. I. Abdul Rahim, M. R. Yahya and A. F. Awang Mat, "A wide gain-bandwidth CMOS fully-differential folded cascode amplifier," 2010 International Conference on Electronic Devices, Systems and Applications, 2010, pp. 165-168.
[8] X. Chen, Z. -G. Wang and F. Li, "A 1-V 90.3-dB DR 100-kHz BW 4th-Order Single Bit Sigma-Delta Modulator in 40-nm CMOS Technology," 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), 2018, pp. 38-41.
[9] " ACPL-785J Data Sheet." Avago https://www.mouser.tw/datasheet/2/678/av02-1545en_ds_acpl-785j_2015-03-06-1827991.pdf
[10] S. Li, B. Qiao, M. Gandara, D. Z. Pan and N. Sun, "A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3484-3496, Dec. 2018.
[11] L. Luo, S. Li, J. Wei, Y. Wu, F. Ye and J. Ren, "A Band-Pass Noise-Shaping Modulator Using the Error-Feedback Structure on a 10-bit SAR ADC," 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 2019, pp. 766-769.
[12] V. Hariprasath, J. Guerber, S.-H. Lee, and U.-K. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, pp. 620–621, 2010.
[13] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010, doi: 10.1109/JSSC.2010.2042254.
[14] J. -H. Lee and K. -Y. Lee, "A Design of Low-Power Bootstrapped CMOS Switch for 20MS/s 12-bit Charge Sharing SAR ADCs," 2021 18th International SoC Design Conference (ISOCC), Jeju Island, Korea, Republic of, 2021, pp. 5-6.
[15] X. Tang, B. Kasap, L. Shen, X. Yang, W. Shi and N. Sun, "An Energy-Efficient Comparator with Dynamic Floating Inverter Pre-Amplifier," 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019, pp. C140-C141.
[16] K. Bandla, H. A. and D. Pal, "Design of Low Power, High Speed, Low Offset and Area Efficient Dynamic-Latch Comparator for SAR-ADC," 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), Aswan, Egypt, 2020, pp. 299-302.
[17] H. Ghaedrahmati, J. Zhou and L. Shi, "Gain-boosted Complementary Dynamic Residue Amplifier for a 160 MS/s 61 dB SNDR Noise-Shaping SAR ADC," 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 2018, pp. 141-144.
[18] X. Tang et al., "A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier," in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
[19] Y. Kwon, T. Kim, N. Sun and Y. Chae, "A 348-μW 68.8-dB SNDR 20-MS/s Pipelined SAR ADC With a Closed-Loop Two-Stage Dynamic Amplifier," in IEEE Solid-State Circuits Letters, vol. 4, pp. 166-169, 2021.
[20] W. -C. Lai, J. -F. Huang and S. -Z. Huang, "Sigma-delta modulator with near infrared charging for IOT wireless power transfer application," 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), 2017, pp. 134-137.
[21] S. A. El-Sayed, G. A. Fahmy, A. I. Hussein and F. A. -E. Al Geldawy, "A low-power dual-mode sigma-delta modulator using charge-steering opamps," 2016 33rd National Radio Science Conference (NRSC), 2016, pp. 415-420.
[22] W. Lai and M. Chung, "Integrated continuous-time Sigma-Delta Modulator and low noise amplifier for tracheostomy tube wireless application," 2016 5th International Symposium on Next-Generation Electronics (ISNE), 2016, pp. 1-3.
[23] L. Shi, E. Thiagarajan, R. Singh, E. Hancioglu, U. -K. Moon and G. C. Temes, "Noise-Shaping SAR ADC Using a Two-Capacitor Digitally Calibrated DAC With 82.6-dB SNDR and 90.9-dB SFDR," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4001-4012, Oct. 2021.
[24] T. Kim and Y. Chae, "A 2.1 mW 2 MHz-BW 73.8 dB-SNDR Buffer-Embedded Noise-Shaping SAR ADC," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 12, pp. 5029-5037, Dec. 2021.
[25] J. Hu, D. Li, M. Liu and Z. Zhu, "A 10-kS/s 625-Hz-Bandwidth 65-dB SNDR Second-Order Noise-Shaping SAR ADC for Biomedical Sensor Applications," in IEEE Sensors Journal, vol. 20, no. 23, pp. 13881-13891, 1 Dec.1, 2020.
[26] J. Hu, D. Li, M. Liu and Z. Zhu, "A 10-kS/s 625-Hz-Bandwidth 65-dB SNDR Second-Order Noise-Shaping SAR ADC for Biomedical Sensor Applications," in IEEE Sensors Journal, vol. 20, no. 23, pp. 13881-13891, 1 Dec.1, 2020.
指導教授 薛木添 審核日期 2024-3-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明