參考文獻 |
[1] "H. Julian Goldsmid, "Introduction to Thermoelectricity" ,2009.."
[2] "T.E.o.E. Britannica and S. A. History. "Peltier effect." https://www.britannica.com/science/Peltier-effect." (accessed.
[3] Shabbusharma. "What is Thomson Effect? Origin of Thomson effect and Thomson coefficient. https://physicswave.com/what-is-thomson-effect/." (accessed.
[4] X. Zhang and L.-D. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity," Journal of Materiomics, vol. 1, no. 2, pp. 92-105, 2015, doi: 10.1016/j.jmat.2015.01.001.
[5] J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, no. 6358, Sep 29 2017, doi: 10.1126/science.aak9997.
[6] "G. K. H. Madsen, J. Am. Chem. Soc., 2006, 128: 12140. ."
[7] Y. T. Chen and C. L. Chen, "The Application of Thermoelectricity in Renewable Energy," Physics Bimonthly, 2020.
[8] S. o. E. D.J. Paul, University of Glasgow. "Thermoelectrics. https://userweb.eng.gla.ac.uk/douglas.paul/thermoelectrics.html." (accessed.
[9] "Thermoelectric effect" Eng.FSU.edu., 2002-02-01.
[10] "<Rowe, D.M. - Thermoelectrics Handbook_ Macro to Nano (2005, CRC Press) - libgen.lc.pdf>."
[11] K. Singsoog and T. Seetawan, "Effecting the thermoelectric properties of p-MnSi1.75 and n-Mg1.98Ag0.02Si module on power generation," Physica B: Condensed Matter, vol. 566, pp. 1-5, 2019, doi: 10.1016/j.physb.2019.02.052.
[12] J. Yang et al., "On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective," npj Computational Materials, vol. 2, no. 1, 2016, doi: 10.1038/npjcompumats.2015.15.
[13] C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, "Nanostructured thermoelectrics: big efficiency gains from small features," Adv Mater, vol. 22, no. 36, pp. 3970-80, Sep 22 2010, doi: 10.1002/adma.201000839.
[14] C.-B. Tsay and T.-H. King, "Effects of Infiltration Process on the Profile Precision of a Powder Metallurgy Spur Gear," 2014.
[15] "Silicon Ingot Production: Czochralski- and Float-Zone Technique. https://www.microchemicals.com/products/wafers/silicon_ingot_production.html." (accessed.
[16] 張. 李瑜煜, "熱電材料熱壓燒結技術研究[J]. 材料導報," 2007.
[17] O. Guillon et al., "Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments," Advanced Engineering Materials, vol. 16, no. 7, pp. 830-849, 2014, doi: 10.1002/adem.201300409.
[18] 葉建弦, "固態熱電材料在廢熱回收領域之應用," 2014.
[19] S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, "Metal nanoparticle decorated n-type Bi(2)Te(3)-based materials with enhanced thermoelectric performances," Nanotechnology, vol. 24, no. 28, p. 285702, Jul 19 2013, doi: 10.1088/0957-4484/24/28/285702.
[20] Y. R. Jin, Z. Z. Feng, L. Y. Ye, Y. L. Yan, and Y. X. Wang, "Mg2Sn: a potential mid-temperature thermoelectric material," RSC Advances, vol. 6, no. 54, pp. 48728-48736, 2016, doi: 10.1039/c6ra04986a.
[21] X. Liu et al., "Significant Roles of Intrinsic Point Defects in Mg2X(X= Si, Ge, Sn) Thermoelectric Materials," Advanced Electronic Materials, vol. 2, no. 2, 2016, doi: 10.1002/aelm.201500284.
[22] G. J. S. a. E. S. Toberer, "Complex thermoelectric materials," vol. 7, pp. 105-114, 2008.
[23] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and old concepts in thermoelectric materials," Angew Chem Int Ed Engl, vol. 48, no. 46, pp. 8616-39, 2009, doi: 10.1002/anie.200900598.
[24] R. Gabi Schierning, Roland Schmechel, Benjamin Balke, GerdaRogl, PeterRogl, "Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design.," 2015.
[25] T. Graf, C. Felser, and S. S. P. Parkin, "Simple rules for the understanding of Heusler compounds," Progress in Solid State Chemistry, vol. 39, no. 1, pp. 1-50, 2011, doi: 10.1016/j.progsolidstchem.2011.02.001.
[26] W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. M. Tritt, "Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds," Nanomaterials (Basel), vol. 2, no. 4, pp. 379-412, Nov 14 2012, doi: 10.3390/nano2040379.
[27] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson, "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, vol. 32, pp. 313-327, 2014, doi: 10.1016/j.rser.2013.12.030.
[28] M. Søndergaard, M. Christensen, K. A. Borup, H. Yin, and B. B. Iversen, "Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4," Journal of Materials Science, vol. 48, no. 5, pp. 2002-2008, 2012, doi: 10.1007/s10853-012-6967-0.
[29] M. Mejri, B. Malard, Y. Thimont, K. Romanjek, H. Ihou Mouko, and C. Estournès, "Thermal stability of Mg2Si0.55Sn0.45 for thermoelectric applications," Journal of Alloys and Compounds, vol. 846, 2020, doi: 10.1016/j.jallcom.2020.156413.
[30] Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, "High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials," Applied Physics Letters, vol. 93, no. 10, 2008, doi: 10.1063/1.2981516.
[31] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions," Phys Rev Lett, vol. 108, no. 16, p. 166601, Apr 20 2012, doi: 10.1103/PhysRevLett.108.166601.
[32] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping," Applied Physics Letters, vol. 103, no. 6, 2013, doi: 10.1063/1.4816971.
[33] R. B. Song, T. Aizawa, and J. Q. Sun, "Synthesis of Mg2Si1−xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing," Materials Science and Engineering: B, vol. 136, no. 2-3, pp. 111-117, 2007, doi: 10.1016/j.mseb.2006.09.011.
[34] B. Srinivasan, "Novel Chalcogenide based Glasses, Ceramics and Polycrystalline Materials for Thermoelectric Application.," 2018.
[35] T. T. M. Pooria Gill, Bijan Ranjbar, "Differential scanning calorimetry techniques:applications in biology and nanoscience.," 2010.
[36] "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹 https://www.techmaxasia.com/knowledge-detail/DSC-20210208/," 2021.
[37] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science, vol. 320, no. 5876, pp. 634-8, May 2 2008, doi: 10.1126/science.1156446.
[38] "Use X-ray to see through the world of material atomic arrangement structure," National Applied Research Laboratories.
[39] "X-ray in National Taiwan University of Science and Technology,http://www-o.ntust.edu.tw/~ntustxrd/products.html," X-ray Diffraction Laboratory, National Taiwan University of Science and Technology.
[40] 羅聖全, "研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM."
[41] A. S. Ali, "Application of Nanomaterials in Environmental Improvement," 2020.
[42] "Scanning Electron Microscope(SEM),https://www.istgroup.com/tw/service/sem/."
[43] P. Gao, X. Lu, I. Berkun, R. D. Schmidt, E. D. Case, and T. P. Hogan, "Reduced lattice thermal conductivity in Bi-doped Mg2Si0.4Sn0.6," Applied Physics Letters, vol. 105, no. 20, 2014, doi: 10.1063/1.4901178. |