博碩士論文 109521036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.133.119.75
姓名 傅宇辰(Yu-Chen Fu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫熱電材料之製程開發及元件製作
(Process Development of N-type Mg2(SiSn) Thermoelectric Materials and Devices)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在科技高速發展的世代,總伴隨著大量能源的消耗,而其中化石能源便一直是最為廣泛使用的能源。近幾年電動車的蓬勃發展,反映出各國皆積極開發替代化石能源的可能性,隨著環境保護意識不斷的提高、可再生能源逐漸受到了重視,使得熱電材料成為明日之星。熱電材料能夠回收廢熱,把逸散或多餘的熱能轉換成電能,使得總能量轉換效率得到進一步的提升,這種材料的特性讓它具有成為可再生能源的基礎。
本實驗參考前屆學長的N型Mg2SiSn實驗結果後發想,以調變鉍的摻雜和調變鎂矽與鎂錫的混和比例等方式,合成出有著更高功率因子、更低熱傳導率的N型Mg2SiSn熱電塊材,在200度時達到ZT最大值0.115。實驗過程中經由粉末摻雜、混和、冷壓成型、高溫燒結與金屬接觸的銜接等步驟,同時在各個階段對熱電塊材進行電性量測與分析,最後與本實驗室邱思萍同學研究的P型Mg2SiSn熱電塊材進行搭配,組合成單對PN熱電元件。期望本實驗能夠合成出有著優異熱電優值的Mg2SiSn熱電塊材,並製作成熱電元件。
摘要(英) During the technological development, a large amount of energy is consumed. Among them, fossil energy has always been the most widely used one. In recent years, vigorous development of electric vehicles reflects countries are actively developing the possibility of alternative energy. With the increasing environmental protection awareness, renewable energy has gradually attracted attention, making thermoelectric materials a rising star. Because thermoelectric materials could convert excess thermal energy into electrical energy, they further improve the overall efficiency.
In this study, N-type Mg2SiSn is research topic. The N-type Mg2SiSn bulk was synthesized by bismuth doping and Mg2Sn/Mg2Si mixing for higher PF and lower thermal conductivity. During the experiment processes of powder doping, mixing, cold pressing, high temperature annealing, metal contact connection, and the electrical properties measurements of the material, finally, a single-pair PN thermoelectric element/device was made. It is expected that the Mg2(SiSn) bulk with excellent thermoelectric figure of merit can be made into thermoelectric applications.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 熱電轉換效應
★ 熱電優值
★ 熱電元件
★ 粉末冶金製程
關鍵字(英) ★ Seebeck Effect
★ Thermoelectric Device
★ MgSiSn
論文目次 目錄

中文提要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章、緒論 1
1-1 前言 1
1-2 熱電發展的歷史 1
1-3 熱電特性的前景與應用 3
第二章、熱電特性與文獻回顧 4
2-1 前言 4
2-2 熱電特性 4
2-2-1 熱電優值 4
2-2-2 席貝克效應 6
2-2-3 功率因子 7
2-2-4 熱傳導率 8
2-3 文獻回顧 10
2-3-1 常見的熱電塊材製備方法 10
2-3-2 常見熱電材料與結構 12
2-3-3 研究動機 16
2-3-4 鎂矽錫熱電材料 17
第三章、量測方式 20
3-1 量測儀器 20
3-1-1 席貝克係數量測 20
3-1-2 電導率量測 22
3-1-3 密度量測 23
3-1-4 熱擴散率量測 24
3-1-5 比熱量測 25
3-1-6 熱傳導率分析 25
3-1-7 材料晶體特性分析 26
3-1-8 材料微觀分析 28
3-1-9 模組電性量測 30
第四章、實驗步驟 32
4-1 前言 32
4-2 實驗步驟方塊圖 33
4-3 實驗步驟 34
4-3-1 鎂錫的製程 34
4-3-2 矽粉的摻雜 36
4-3-3 鎂矽的製程 37
4-3-4 鎂矽錫的製程 38
4-3-5 元件的製作 39
第五章、實驗結果與討論 41
5-1 前言 41
5-2 第一階段 42
5-2-1 摻雜原料變質 42
5-2-2 Mg2SnBi0.02額外添加Mg 44
5-2-3 Mg2Sn摻雜Bi的比例 47
5-2-4 Mg2SnBi0.08額外添加Mg 50
5-2-5 鎂矽製程的調整 53
5-3 第二階段 54
5-3-1 Mg2SnBi0.02額外添加Mg嘗試二次燒結400度/48小時 54
5-3-2 Mg2SnBi0.02+20at%Mg嘗試二次添加Mg及二次燒結400度/48小時 57
5-3-3 Mg2SnBi0.02額外添加Mg嘗試以不磨碎直接二次燒結400度/48小時 60
5-4 第三階段 63
5-4-1 Mg2SnBi0.02+20at%Mg混和不同比例Mg2Si 63
5-4-2 Mg2SnBi0.08 +20at% Mg混和不同比例Mg2Si 68
5-4-3 Mg2SnBi0.02+20at%Mg混和更高比例Mg2Si 72
5-4-4 元件上金屬接觸的選擇 75
5-4-5 單對PN元件 78
第六章、結論 86
參考文獻 88
參考文獻 [1] "H. Julian Goldsmid, "Introduction to Thermoelectricity" ,2009.."
[2] "T.E.o.E. Britannica and S. A. History. "Peltier effect." https://www.britannica.com/science/Peltier-effect." (accessed.
[3] Shabbusharma. "What is Thomson Effect? Origin of Thomson effect and Thomson coefficient. https://physicswave.com/what-is-thomson-effect/." (accessed.
[4] X. Zhang and L.-D. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity," Journal of Materiomics, vol. 1, no. 2, pp. 92-105, 2015, doi: 10.1016/j.jmat.2015.01.001.
[5] J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, no. 6358, Sep 29 2017, doi: 10.1126/science.aak9997.
[6] "G. K. H. Madsen, J. Am. Chem. Soc., 2006, 128: 12140. ."
[7] Y. T. Chen and C. L. Chen, "The Application of Thermoelectricity in Renewable Energy," Physics Bimonthly, 2020.
[8] S. o. E. D.J. Paul, University of Glasgow. "Thermoelectrics. https://userweb.eng.gla.ac.uk/douglas.paul/thermoelectrics.html." (accessed.
[9] "Thermoelectric effect" Eng.FSU.edu., 2002-02-01.
[10] "<Rowe, D.M. - Thermoelectrics Handbook_ Macro to Nano (2005, CRC Press) - libgen.lc.pdf>."
[11] K. Singsoog and T. Seetawan, "Effecting the thermoelectric properties of p-MnSi1.75 and n-Mg1.98Ag0.02Si module on power generation," Physica B: Condensed Matter, vol. 566, pp. 1-5, 2019, doi: 10.1016/j.physb.2019.02.052.
[12] J. Yang et al., "On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective," npj Computational Materials, vol. 2, no. 1, 2016, doi: 10.1038/npjcompumats.2015.15.
[13] C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, "Nanostructured thermoelectrics: big efficiency gains from small features," Adv Mater, vol. 22, no. 36, pp. 3970-80, Sep 22 2010, doi: 10.1002/adma.201000839.
[14] C.-B. Tsay and T.-H. King, "Effects of Infiltration Process on the Profile Precision of a Powder Metallurgy Spur Gear," 2014.
[15] "Silicon Ingot Production: Czochralski- and Float-Zone Technique. https://www.microchemicals.com/products/wafers/silicon_ingot_production.html." (accessed.
[16] 張. 李瑜煜, "熱電材料熱壓燒結技術研究[J]. 材料導報," 2007.
[17] O. Guillon et al., "Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments," Advanced Engineering Materials, vol. 16, no. 7, pp. 830-849, 2014, doi: 10.1002/adem.201300409.
[18] 葉建弦, "固態熱電材料在廢熱回收領域之應用," 2014.
[19] S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, "Metal nanoparticle decorated n-type Bi(2)Te(3)-based materials with enhanced thermoelectric performances," Nanotechnology, vol. 24, no. 28, p. 285702, Jul 19 2013, doi: 10.1088/0957-4484/24/28/285702.
[20] Y. R. Jin, Z. Z. Feng, L. Y. Ye, Y. L. Yan, and Y. X. Wang, "Mg2Sn: a potential mid-temperature thermoelectric material," RSC Advances, vol. 6, no. 54, pp. 48728-48736, 2016, doi: 10.1039/c6ra04986a.
[21] X. Liu et al., "Significant Roles of Intrinsic Point Defects in Mg2X(X= Si, Ge, Sn) Thermoelectric Materials," Advanced Electronic Materials, vol. 2, no. 2, 2016, doi: 10.1002/aelm.201500284.
[22] G. J. S. a. E. S. Toberer, "Complex thermoelectric materials," vol. 7, pp. 105-114, 2008.
[23] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and old concepts in thermoelectric materials," Angew Chem Int Ed Engl, vol. 48, no. 46, pp. 8616-39, 2009, doi: 10.1002/anie.200900598.
[24] R. Gabi Schierning, Roland Schmechel, Benjamin Balke, GerdaRogl, PeterRogl, "Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design.," 2015.
[25] T. Graf, C. Felser, and S. S. P. Parkin, "Simple rules for the understanding of Heusler compounds," Progress in Solid State Chemistry, vol. 39, no. 1, pp. 1-50, 2011, doi: 10.1016/j.progsolidstchem.2011.02.001.
[26] W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. M. Tritt, "Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds," Nanomaterials (Basel), vol. 2, no. 4, pp. 379-412, Nov 14 2012, doi: 10.3390/nano2040379.
[27] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson, "Material and manufacturing cost considerations for thermoelectrics," Renewable and Sustainable Energy Reviews, vol. 32, pp. 313-327, 2014, doi: 10.1016/j.rser.2013.12.030.
[28] M. Søndergaard, M. Christensen, K. A. Borup, H. Yin, and B. B. Iversen, "Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4," Journal of Materials Science, vol. 48, no. 5, pp. 2002-2008, 2012, doi: 10.1007/s10853-012-6967-0.
[29] M. Mejri, B. Malard, Y. Thimont, K. Romanjek, H. Ihou Mouko, and C. Estournès, "Thermal stability of Mg2Si0.55Sn0.45 for thermoelectric applications," Journal of Alloys and Compounds, vol. 846, 2020, doi: 10.1016/j.jallcom.2020.156413.
[30] Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, "High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials," Applied Physics Letters, vol. 93, no. 10, 2008, doi: 10.1063/1.2981516.
[31] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions," Phys Rev Lett, vol. 108, no. 16, p. 166601, Apr 20 2012, doi: 10.1103/PhysRevLett.108.166601.
[32] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping," Applied Physics Letters, vol. 103, no. 6, 2013, doi: 10.1063/1.4816971.
[33] R. B. Song, T. Aizawa, and J. Q. Sun, "Synthesis of Mg2Si1−xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing," Materials Science and Engineering: B, vol. 136, no. 2-3, pp. 111-117, 2007, doi: 10.1016/j.mseb.2006.09.011.
[34] B. Srinivasan, "Novel Chalcogenide based Glasses, Ceramics and Polycrystalline Materials for Thermoelectric Application.," 2018.
[35] T. T. M. Pooria Gill, Bijan Ranjbar, "Differential scanning calorimetry techniques:applications in biology and nanoscience.," 2010.
[36] "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹 https://www.techmaxasia.com/knowledge-detail/DSC-20210208/," 2021.
[37] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science, vol. 320, no. 5876, pp. 634-8, May 2 2008, doi: 10.1126/science.1156446.
[38] "Use X-ray to see through the world of material atomic arrangement structure," National Applied Research Laboratories.
[39] "X-ray in National Taiwan University of Science and Technology,http://www-o.ntust.edu.tw/~ntustxrd/products.html," X-ray Diffraction Laboratory, National Taiwan University of Science and Technology.
[40] 羅聖全, "研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM."
[41] A. S. Ali, "Application of Nanomaterials in Environmental Improvement," 2020.
[42] "Scanning Electron Microscope(SEM),https://www.istgroup.com/tw/service/sem/."
[43] P. Gao, X. Lu, I. Berkun, R. D. Schmidt, E. D. Case, and T. P. Hogan, "Reduced lattice thermal conductivity in Bi-doped Mg2Si0.4Sn0.6," Applied Physics Letters, vol. 105, no. 20, 2014, doi: 10.1063/1.4901178.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2022-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明