參考文獻 |
[1] N. Gupta, A. Makosiej, H. Shrimali, A. Amara, A. Vladimirescu and C. Anghel, "Tunnel FET Negative-Differential-Resistance Based 1T1C Refresh-Free-DRAM, 2T1C SRAM and 3T1C CAM," in IEEE Transactions on Nanotechnology, vol. 20, pp. 270-277, 2021, doi: 10.1109/TNANO.2021.3061607.
[2] W. Choi, G. Kang, and J. Park, “A refresh-less eDRAM macro with embedded voltage reference and selective read for an area and power efficient Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2451–2462, Oct. 2015.
[3] E. Yoshida and T. Tanaka, "A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory," in IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 692-697, April 2006
[4] S. Ramaswamy and M. J. Kumar, "Junctionless Impact Ionization MOS: Proposal and Investigation," in IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4295-4298, Dec. 2014, doi: 10.1109/TED.2014.2361343.
[5] Song Zhao et al., "GIDL simulation and optimization for 0.13 /spl mu/m/1.5 V low power CMOS transistor design," International Conference on Simulation of Semiconductor Processes and Devices, 2002, pp. 43-46, doi: 10.1109/SISPAD.2002.1034512.
[6] Churoo Park et al., "A 512 Mbit, 1.6 Gbps/pin DDR3 SDRAM prototype with C/sub 10/ minimization and self-calibration techniques," Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005., 2005, pp. 370-373, doi: 10.1109/VLSIC.2005.1469407.
[7] S. Shim et al., "A 16Gb 1.2V 3.2Gb/s/pin DDR4 SDRAM with improved power distribution and repair strategy," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 212-214, doi: 10.1109/ISSCC.2018.8310259.
[8] D. Kim et al., "A 1.1-V 10-nm Class 6.4-Gb/s/Pin 16-Gb DDR5 SDRAM With a Phase Rotator-ILO DLL, High-Speed SerDes, and DFE/FFE Equalization Scheme for Rx/Tx," in IEEE Journal of Solid-State Circuits, vol. 55, no. 1, pp. 167-177, Jan. 2020, doi: 10.1109/JSSC.2019.2948806.
[9] M. J. Kramer, E. Janssen, K. Doris and B. Murmann, "A 14 b 35 MS/s SAR ADC Achieving 75 dB SNDR and 99 dB SFDR With Loop-Embedded Input Buffer in 40 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2891-2900, Dec. 2015, doi: 10.1109/JSSC.2015.2463110.
[10] J. -A. Wang, Y. -Y. Zhao and Z. -P. Zhang, "A 90-nm 640 MHz 2 × VDD Output Buffer With 41.5% Slew Rate Improvement Using PVT Compensation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 9, pp. 1524-1528, Sept. 2020, doi: 10.1109/TCSII.2020.3012150.
[11] X. Chen, Y. Li and T. Zhang, "Reducing Flash Memory Write Traffic by Exploiting a Few MBs of Capacitor-Powered Write Buffer Inside Solid-State Drives (SSDs)," in IEEE Transactions on Computers, vol. 68, no. 3, pp. 426-439, 1 March 2019, doi: 10.1109/TC.2018.2871683.
[12] J. Song et al., "A 3T eDRAM In-Memory Physically Unclonable Function With Spatial Majority Voting Stabilization," in IEEE Solid-State Circuits Letters, vol. 5, pp. 58-61, 2022, doi: 10.1109/LSSC.2022.3158630.
[13] H. Shin, J. Sim, D. Lee and L. -S. Kim, "A PVT-robust Customized 4T Embedded DRAM Cell Array for Accelerating Binary Neural Networks," 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2019, pp. 1-8, doi: 10.1109/ICCAD45719.2019.8942072.
[14] J. H. Ahn, J. Leverich, R. Schreiber and N. P. Jouppi, "Multicore DIMM: an Energy Efficient Memory Module with Independently Controlled DRAMs," in IEEE Computer Architecture Letters, vol. 8, no. 1, pp. 5-8, Jan. 2009, doi: 10.1109/L-CA.2008.13.
[15] Y. Kim et al., "A 16Gb 18Gb/S/pin GDDR6 DRAM with per-bit trainable single-ended DFE and PLL-less clocking," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 204-206, doi: 10.1109/ISSCC.2018.8310255.
[16] K. Hwang et al., "A 16Gb/s/pin 8Gb GDDR6 DRAM with bandwidth extension techniques for high-speed applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 210-212, doi: 10.1109/ISSCC.2018.8310258.
[17] C. H. Tan, J. S. Ng, G. J. Rees and J. P. R. David, "Statistics of Avalanche Current Buildup Time in Single-Photon Avalanche Diodes," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 906-910, July-aug. 2007, doi: 10.1109/JSTQE.2007.903843.
[18] J. -H. Park, J. -S. Song, S. -I. Lim and S. Kim, "A high speed and low power 4∶1 multiplexer with cascoded clock control," 2010 IEEE Asia Pacific Conference on Circuits and Systems, 2010, pp. 316-319, doi: 10.1109/APCCAS.2010.5774935.
[19] S. M. Kim, T. W. Oh and S. -O. Jung, "Sensing voltage compensation circuit for low-power dram bit-line sense amplifier," 2018 International Conference on Electronics, Information, and Communication (ICEIC), 2018, pp. 1-4, doi: 10.23919/ELINFOCOM.2018.8330545.
[20] R. Sinha, M. S. Hashmi and G. A. Kumar, "A positive level shifter for high speed symmetric switching in flash memories," 18th International Symposium on VLSI Design and Test, 2014, pp. 1-5, doi: 10.1109/ISVDAT.2014.6881064.
[21] P. Liu, X. Wang, D. Wu, Z. Zhang and L. Pan, "A novel high-speed and low-power negative voltage level shifter for low voltage applications," Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 601-604, doi: 10.1109/ISCAS.2010.5537521.
[22] S. M. Kim, B. Song, T. W. Oh and S. -O. Jung, "Analysis on Sensing Yield of Voltage Latched Sense Amplifier for Low Power DRAM," 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2018, pp. 65-68, doi: 10.1109/PRIME.2018.8430359.
[23] T. -J. Lee, W. -J. Su, L. K. S. Tolentino and C. -C. Wang, "A 2.5-GHz 2×VDD 16-nm FinFET Digital Output Buffer with Slew Rate and Duty Cycle Self-Adjustment," 2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS), 2021, pp. 153-156, doi: 10.1109/APCCAS51387.2021.9687736.
[24] B. N. Bagamma, K. S. V. Patel and P. Ravi, "Implementation of 5–32 address decoders for SRAM memory in 180nm technology," 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017, pp. 110-114, doi: 10.1109/ICEECCOT.2017.8284649.
[25] D. Berwal, A. Kumar and Y. Kumar, "Low power conditional pulse control with Transmission Gate Flip-Flop," International Conference on Computing, Communication & Automation, 2015, pp. 1358-1362, doi: 10.1109/CCAA.2015.7148589.
[26] N. Borrel et al., "Electrical model of an NMOS body biased structure in triple-well technology under photoelectric laser stimulation," 2015 IEEE International Reliability Physics Symposium, 2015, pp. FA.1.1-FA.1.6, doi: 10.1109/IRPS.2015.7112799.
[27] K. Baker and J. Van Beers, "Shmoo plotting: the black art of IC testing," in IEEE Design & Test of Computers, vol. 14, no. 3, pp. 90-97, July-Sept. 1997, doi: 10.1109/54.606005.
[28] S. Lyu and Z. Shi, "On-Chip Process Variation Sensor Based on Sub-Threshold Leakage Current with Weak Bias Voltages," 2019 International Conference on IC Design and Technology (ICICDT), 2019, pp. 1-4, doi: 10.1109/ICICDT.2019.8790891.
[29] T. Tomimatsu, T. Yamaguchi, M. Mizuo, T. Yamashita, Y. Kawasaki and A. Ishii, "Influence of STI stress on leakage current in buried P-N junction," 2013 13th International Workshop on Junction Technology (IWJT), 2013, pp. 107-108, doi: 10.1109/IWJT.2013.6644517.
[30] T. Ishida, T. Mine, D. Hisamoto, Y. Shimamoto and R. -i. Yamada, "Electron-Trap and Hole-Trap Distributions in Metal/Oxide/Nitride/Oxide/Silicon Structures," in IEEE Transactions on Electron Devices, vol. 60, no. 2, pp. 863-869, Feb. 2013, doi: 10.1109/TED.2012.2235145.
[31] W. Choi, G. Kang, and J. Park, “A refresh-less eDRAM macro with embedded voltage reference and selective read for an area and power efficient Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2451–2462, Oct. 2015.
[32] R. Giterman, A. Fish, N. Geuli, E. Mentovich, A. Burg, and A. Teman, “An 800-MHz mixed- VT 4T IFGC embedded DRAM in 28-nm CMOS bulk process for approximate storage applications,” IEEE J. Solid-State Circuits, vol. 53, no. 7, pp. 2136–2148, Jul. 2018.
[33] R. Giterman, A. Shalom, A. Burg, A. Fish and A. Teman, "A 1-Mbit Fully Logic-Compatible 3T Gain-Cell Embedded DRAM in 16-nm FinFET," in IEEE Solid-State Circuits Letters, vol. 3, pp. 110-113, 2020, doi: 10.1109/LSSC.2020.3006496.
[34] K. C. Chun, P. Jain, J. H. Lee and C. H. Kim, "A sub-0.9V logic-compatible embedded DRAM with boosted 3T gain cell, regulated bit-line write scheme and PVT-tracking read reference bias," 2009 Symposium on VLSI Circuits, 2009, pp. 134-135.
[35] D. Somasekhar et al., "2GHz 2Mb 2T Gain-Cell Memory Macro with 128GB/s Bandwidth in a 65nm Logic Process," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008, pp. 274-613, doi: 10.1109/ISSCC.2008.4523163.
[36] R. Saligram, S. Datta and A. Raychowdhury, "CryoMem: A 4–300-K 1.3-GHz Hybrid 2T-Gain-Cell-Based eDRAM Macro in 28-nm Logic Process for Cryogenic Applications," in IEEE Solid-State Circuits Letters, vol. 4, pp. 194-197, 2021, doi: 10.1109/LSSC.2021.3123866.
[37] R. Giterman, A. Teman and P. Meinerzhagen, "Hybrid GC-eDRAM/SRAM Bitcell for Robust Low-Power Operation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1362-1366, Dec. 2017, doi: 10.1109/TCSII.2017.2768102.
[38] O. Maltabashi, H. Marinberg, R. Giterman and A. Teman, "A 5-Transistor Ternary Gain-Cell eDRAM with Parallel Sensing," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351360.
[39] K. C. Chun, P. Jain, J. H. Lee and C. H. Kim, "A 3T Gain Cell Embedded DRAM Utilizing Preferential Boosting for High Density and Low Power On-Die Caches," in IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1495-1505, June 2011, doi: 10.1109/JSSC.2011.2128150.
[40] F. Hamzaoglu et al., "A 1 Gb 2 GHz 128 GB/s Bandwidth Embedded DRAM in 22 nm Tri-Gate CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 150-157, Jan. 2015, doi: 10.1109/JSSC.2014.2353793.
|