參考文獻 |
[1] S. Taneja, V. K. Rajanna and M. Alioto, "36.1 Unified In-Memory Dynamic TRNG and
Multi-Bit Static PUF Entropy Generation for Ubiquitous Hardware Security," 2021 IEEE
International Solid- State Circuits Conference (ISSCC), 2021, pp. 498-500.
[2] F. Ferdaus, B. M. S. Bahar Talukder, M. Sadi and M. T. Rahman, "True Random Number
Generation using Latency Variations of Commercial MRAM Chips," 2021 22nd International
Symposium on Quality Electronic Design (ISQED), 2021, pp. 510-515.
[3] B. Lin et al., "A High-performance and Calibration-free True Random Number Generator
Based on the Resistance Perturbation in RRAM Array," 2020 IEEE International Electron
Devices Meeting (IEDM), 2020, pp. 38.6.1-38.6.4.
[4] C. Xu, R. Hu, Y. Wang and F. Shi, "A noniterative reconstruction algorithm for LFSR
PRNG," Proceedings of 2012 2nd International Conference on Computer Science and Network
Technology, 2012, pp. 336-339.
[5] S. R., N. T. Deshpande and A. R. Aswatha, "Design and Analysis of a New Loadless 4T
SRAM Cell in Deep Submicron CMOS Technologies," 2009 Second International Conference
on Emerging Trends in Engineering & Technology, 2009, pp. 155-161.
[6] T. Gupta and P. Naik, "Comparative analysis of 2T, 3T and 4T DRAM CMOS cells," 2017
International Conference on Information, Communication, Instrumentation and Control
(ICICIC), 2017, pp. 548-564.
[7] S. Guo et al., "Investigation on the amplitude coupling effect of random telegraph noise
(RTN) in nanoscale FinFETs," 2018 IEEE International Reliability Physics Symposium (IRPS),
2018, pp. P-TX.6-1-P-TX.6-4.
[8] F. Pebay-Peyroula, T. Dalgaty and E. Vianello, "Entropy source characterization in HfO2
RRAM for TRNG applications," 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2020, pp. 55-57.
[9] K. Yang et al., "A 28NM Integrated True Random Number Generator Harvesting Entropy
from MRAM," 2018 IEEE Symposium on VLSI Circuits, 2018, pp. 171-172.
[10] E. Piccinini, R. Brunetti and M. Rudan, "Self-Heating Phase-Change Memory-Array
Demonstrator for True Random Number Generation," in IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2185-2192
[11] K. Yang, D. Blaauw, and D. Sylvester, " A Robust −40 to 120°C All Digital True Random
Number Generator in 40nm CMOS," Symposium on VLSI Circuits (VLSI Circuits), 2015, pp.
280-281.
[12] W. Y. Yang, B. Y. Chen, C. C. Chuang, E. R. Hsieh, K. S. Li and S. S. Chung, "Novel
Concept of Hardware Security in Using Gate-switching FinFET Nonvolatile Memory to
Implement True-Random-Number Generator," 2020 IEEE International Electron Devices
Meeting (IEDM), 2020, pp. 39.3.1-39.3.4.
[13] Y. Xiao, E. R. Hsieh, T. P. Chen, S. A. Huang, T. J. Chen, and S. S. Chung, "Novel
Concept of the Transistor Variation Directed Toward the Circuit Implementation of Physical
Unclonable Function (PUF) and True random-number-generator," IEEE International Electron
Devices Meeting (IEDM), 2019, pp. 21.5.1-21.5.4.
[14] Z. Wei, Y. Katoh, S.Ogasahara, Y. Yoshimoto, K. Kawai, Y. Ikeda, K. Eriguchi,
K.Ohmori, S. Yoneda, "True Random Number Generator using Current Difference based on a
Fractional Stochastic Model in 40-nm Embedded ReRAM," IEEE International Electron
Devices Meeting (IEDM), 2016, pp. 4.8.1-14.8.4.
[15] B. Lin, B. Gao, Y. Pang, P. Yao, D. Wu, H. He, J. Tang, H. Qian, and H. Wu "A HighSpeed and High-Reliability TRNG Based on Analog RRAM for IoT Security Application,"
IEEE International Electron Devices Meeting (IEDM), 2019, pp. 14.8.1-14.8.4.
[16] S. Kiamehr, M. S. Golanbari and M. B. Tahoori, "Leveraging aging effect to improve
73
SRAM-based true random number generators," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, 2017, pp. 882-885.
[17] L. T. Clark, S. B. Medapuram and D. K. Kadiyala, "SRAM Circuits for True Random
Number Generation Using Intrinsic Bit Instability," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 10, pp. 2027-2037, Oct. 2018.
[18] A. Chandras and V. S. K. Bhaaskaran, "sensing schemes of sense amplifier for singleended SRAM," 2017 International Conference on Nextgen Electronic Technologies : Silicon to
Software (ICNETS2), 2017, pp. 379-384.
[19] A. Goyal and V. K. Agarwal, "Low Power Consumption Based 4T SRAM Cell for
CMOS 130nm Technology," 2016 8th International Conference on Computational Intelligence
and Communication Networks (CICN), 2016, pp. 590-593.
[20] C. -C. Wang and C. -P. Kuo, "200-MHz Single-Ended 6T 1-kb SRAM With 0.2313 pJ
Energy/Access Using 40-nm CMOS Logic Process," in IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, no. 9, pp. 3163-3166.
[21] S. E. Schuster and R. E. Matick, "Fast Low Power eDRAM Hierarchical Differential
Sense Amplifier," in IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 631-641.
[22] P. Murugeswari, G. Anusha, P. Venkateshwarlu, M. Bhaskar and B. Venkataramani, "A
wide band voltage mode sense amplifier receiver for high speed interconnects," TENCON 2008
- 2008 IEEE Region 10 Conference, 2008, pp. 1717-1722
[23] V . P. -H. Hu, "Reliability-Tolerant Design for Ultra-Thin-Body GeOI 6T SRAM Cell
and Sense Amplifier," in IEEE Journal of the Electron Devices Society, vol. 5, no. 2, pp. 107-
111.
[24] Y. -C. Lai and S. -Y. Huang, "A Resilient and Power-Efficient Automatic-Power-Down
Sense Amplifier for SRAM Design," in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 55, no. 10, pp. 1031-1035.
74
[25] V. Shamdasani and Y. Kim, "Two-dimensional autocorrelation method for ultrasoundbased strain estimation," The 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2004, pp. 1380-1383.
[26] S. Taneja, V. K. Rajanna and M. Alioto, "In-Memory Unified TRNG and Multi-Bit PUF
for Ubiquitous Hardware Security," in IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp.
153-166, Jan. 2022.
[27] S. Taneja and M. Alioto, “Fully synthesizable unified true random number generator and
cryptographic core,” IEEE J. Solid-State Circuits, vol. 56, no. 10, pp. 3049–3061, Oct. 2021.
[28] S. T. Chandrasekaran, V. E. G. Karnam, and A. Sanyal, “0.36-mW, 52-Mbps true random
number generator based on a stochastic delta- sigma modulator,” IEEE Solid-State Circuits
Lett., vol. 3, pp. 190–193, 2020.
[29] V. R. Pamula, X. Sun, S. Kim, F. U. Rahman, B. Zhang, and V. S. Sathe, “An all-digital
true-random-number generator with inte- grated de-correlation and bias correction at 3.2-to-86
Mb/s, 2.58 pJ/bit in 65-nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Honolulu, HI, USA,
Jun. 2018, pp. 1–2.
[30] E. Kim, M. Lee, and J. Kim, “8 Mb/s 28 Mb/mJ robust true-random- number generator
in 65 nm CMOS based on differential ring oscillator with feedback resistors,” in ISSCC Dig.
Tech. Papers, Feb. 2017, pp. 144–145.
[31] M. Kim, U. Ha, K. J. Lee, Y. Lee, and H.-J. Yoo, “A 82-nW chaotic map true random
number generator based on a sub-ranging SAR ADC,” IEEE J. Solid-State Circuits, vol. 52, no.
7, pp. 1953–1965, Jul. 2017. |