博碩士論文 109521048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.15.1.201
姓名 邱思萍(Ssu-Ping Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P型鎂矽錫熱電材料之製程開發及元件製作
(Process Development of P-type Mg2(SiSn) Thermoelectric Materials and Devices)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前發電能源主要以化石燃煤為主,近年來因工業發展迅速,能源無法無限供給,導致能源短缺與氣候暖化等問題產生,為了解決此問題,發展再生能源逐漸被重視。其中熱電發電被廣為討論,因熱電材料可將生活周遭的廢熱轉為電,其運作原理主要是利用溫差產生電位差,使電能與熱能以相互轉換的方式發電,因此是一種極具有發展性的綠色能源。
本論文主要以P型 Mg2(SiSn) 熱電材料作為研究。嘗試調整製程條件與粉末比例,並對試片做量測與分析,選出具有最佳熱電特性的參數製作試片,並找出合適的金屬接觸進行元件製作,最後量測元件的輸出特性。其中測試出具有最佳特性的試片參數為Mg2SnAg0.02+25 at% Mg+4 at% Mg2Si。其試片具有最小電阻率約為1 mΩ-cm,最大賽貝克係數約為196μV/K,整體熱電優質最高可達0.13。
將最佳參數的N、P型鎂矽錫試片,使用兩種方式,組成三組元件,並進行熱電性能的量測,其中以焊錫方式串接N、P試片的元件,最大輸出功率為21.7482μW。
摘要(英) Currently, fossil fuel energy is the main source of electricity. In recent years, owing to the rapid development of industry, energy supply has led to problems such as energy shortage and climate warming. In order to solve this problem, the development of renewable energy has gradually attracted attention. Among them, thermoelectric power generation is widely studied. Since the thermoelectric material can convert the waste heat into electrical energy, under a temperature difference, there will be a potential difference; thereby converting thermal energy into electrical energy.
This dissertation mainly studies P-type Mg2(SiSn) thermoelectric materials. We tried to adjust the process parameters, measure and analyze the test samples, select the parameters with the best thermoelectric performance to make the device, find the metal contacts suitable for component manufacturing, and finally measure the output characteristics of the component. Among them, the component with the best characteristics are Mg2SnAg0.02+25at% Mg+4at% Mg2Si. The sample has a minimum resistivity of about 1 mΩ-cm, a maximum Seebeck coefficient of about 196 μV/K, and an overall maximum ZT of 0.13.
The N-type and P-type Mg2(SiSn) coupons with the best parameters were made into three groups of elements in two ways, and their thermoelectric properties were measured. Among them, the components are welded in series, and the maximum output power is 21.7482 μW.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 熱電轉換效應
★ 熱電優質
★ Seebeck effect
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章、緒論 1
1.1前言 1
1.2研究動機 2
第二章、熱電原理與參考文獻 4
2.1熱電效應 4
2.1.1 Seebeck effect 4
2.1.2 Peltier effect 5
2.1.3 Thomson effect 6
2.2熱電優值 7
2.3熱電模組 9
2.4熱電材料的應用 11
2.4.1熱電發電 11
2.4.2熱電致冷 12
2.5文獻回顧 13
2.5.1 Mg2(SiSn)晶體結構 13
2.5.2 p-type Ag摻雜之Mg2Sn 14
2.5.3 Mg2Si1-xSnx之固溶體 18
第三章、量測儀器 20
3.1 熱電特性量測 20
3.1.1電導率量測 20
3.1.2 Seebeck coefficient量測 22
3.1.3熱擴散量測 23
3.1.4比熱量測 24
3.1.5密度量測 25
3.1.6熱導率量測 26
3.2材料分析 27
3.2.1掃描式電子顯微鏡 27
3.2.2 X光繞射儀 28
3.3元件電性量測 29
第四章、實驗方法與步驟 31
4.1前言 31
4.2實驗流程 32
4.3鎂錫製程方式 33
4.4矽粉製程方式 35
4.5鎂矽製程方式 37
4.6鎂矽錫製程方式 40
4.7元件製作方式 41
第五章、實驗結果與討論 43
5.1鎂錫燒結的參數測試 43
5.1.1 Mg2SnAg0.02回加不同比例Mg的特性分析 43
5.1.2 Mg2Sn摻雜不同比例Ag的特性分析 46
5.2鎂錫二次退火的參數測試 48
5.2.1 Mg2SnAg0.02回加不同比例Mg的特性分析 48
5.2.2 Mg2Sn摻雜不同比例Ag的特性分析 53
5.3鎂矽錫的參數測試 58
5.3.1 Mg2SnAg0.02+25at%Mg+4at%Mg2Si試片有無加壓的比較 58
5.3.2 Mg2SnAg0.02+25at%Mg加入不同比例Mg2Si 63
5.3.3 Mg2SnAg0.04+30at%Mg加入不同比例Mg2Si 67
5.3.4 Mg2SnAg0.02+25at%Mg加入高比例Mg2Si 71
5.4鎂矽錫與金屬接觸的測試 74
5.5元件輸出電性的分析 76
5.5.1元件一(鋁箔/銀漿搭配電鍍鎳) 77
5.5.2元件二(接觸為鋁箔/焊錫) 78
5.5.3元件三(接觸為鋁箔/焊錫) 79
第六章、結論與未來展望 80
第七章、參考文獻 81
參考文獻 [1]Yu-Li Lin, Bo-Yi Sung, Tien-Yuan Li, Kuang-Yao Chen Green Energy & EnvironmentResearch Laboratories Industrial Technology Research Institute (ITRI)
[2]黃振東、徐振庭, "葉神奇的熱電材料——利用溫差的熱電發電技術," 科學發展, no.486 期, 2013
[3]中華民國105年能源統計手冊
[4]Thermoelectricity: Science and Engineerig, Interscience, New York 1961.
[5]朱旭山"熱電材料之元件與應用,"工研院工業材料研究所.
[6]Seebeck, T. J. Abhandlungen der Deutschen Akademie Wissenschaften Zu Berlin 1823, 265.
[7]Carier, P. Sctbnord.; Joint Stock company: 1999.
[8] Heremans, J.P.,et al., Enhancement of thermoelectric efficiency in PbTe by distortion of
[9] 陳洋元、陳正龍. "熱電於再生能源之運用." https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=548 (accessed.
[10] Snyder, G. J., & Toberer, E. S. (2011). Complex thermoelectric materials. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (pp. 101-110).
[11] Alfred, How Thermoelectric Generators Work
https://thermoelectricsolutions.com/how-thermoelectric-generators-work/
[12]Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., & Ismail, M. (2020).
A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, 6, 264-287.






[13] 鄭亦修、葉世弘、余文凱、林岳進、江敏誌, "熱電晶片發電效能的探討及應用." [Online]. Available: http://ir.hust.edu.tw/bitstream/310993100/5573/1/%E7%86%B1%E9%9B%BB%E6%99%B6%E7%89%87%E7%99%BC%E9%9B%BB%E6%95%88%E8%83%BD%E7%9A%84%E6%8E%A2%E8%A8%8E%E5%8F%8A%E6%87%89%E7%94%A8-%E8%AB%96%E6%96%87.pdf
[14] Peltier Device Information Directory. Available from: http://www.peltier-info.com/photos.html
[15] Rowe, D. M. (Ed.). (2018). CRC handbook of thermoelectrics. CRC press.
[16] Zhao, Dongliang, and Gang Tan. "A review of thermoelectric cooling: materials, modeling and applications." Applied thermal engineering 66.1-2 (2014): 15-24.
[17] P. Gao, "Mg2(Si,Sn)-based thermoelectric materials and devices," Ph.D., Michigan State University, Ann Arbor, 10075241, 2016.
[18] Grosch, G. H., & Range, K. J. (1996). Studies on AB2-type intermetallic compounds, I. Mg2Ge and Mg2Sn: single-crystal structure refinement and ab initio calculations. Journal of alloys and compounds, 235(2), 250-255.
[19] Demchyna, R., Leoni, S., Rosner, H., & Schwarz, U. (2006). High-pressure crystal chemistry of binary intermetallic compounds. Zeitschrift für Kristallographie-Crystalline Materials, 221(5-7), 420-434.
[20] Choi, S. M., An, T. H., Seo, W. S., Park, C., Kim, I. H., & Kim, S. U. (2012). Doping effects on thermoelectric properties in the Mg2Sn system. Journal of electronic materials, 41(6), 1071-1076
[21] R. Song, T. Aizawa, and J. Sun, "Synthesis of Mg2Si1− xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing," Materials Science and Engineering: B, vol. 136, no. 2-3, pp. 111-117, 2007.

[22] PVEducation.org Four Point Probe Resistivity Measurements. Available from:
https://www.pveducation.org/pvcdrom/characterisation/four-point-probe-resistivity-measurements
[23]范惠雯, "以金屬奈米粒子調變 P 型鎂矽錫熱電材料之研究及模 組製作," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available:
https://hdl.handle.net/11296/9985a5
[24] Lin, B., Ban, H., Li, C., Scripa, R. N., Su, C.-H., & Lehoczky, S. L. (2005). Method for Obtaining Thermal Conductivity From Modified Laser Flash Measurement Heat Transfer,Part B.
[25] Gill, P., Moghadam, T. T., & Ranjbar, B. (2010). Differential scanning calorimetry techniques: applications in biology and nanoscience. Journal of biomolecular techniques : JBT, 21(4), 167–193.
[26]Britannica, T. Editors of Encyclopaedia (2020, May 29). Archimedes’ principle. Encyclopedia Britannica. Available from: https://www.britannica.com/science/Archimedes-principle.
[27]Liu, Peisheng; Chen, Guo-Feng. Porous Materials:Processing and Applications. Butterworth-Heinemann. 26th August 2014. ISBN 9780124077881
[28]羅聖全, 科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM).2013.
[29]徐欣庭, " P 型鎂矽錫熱電材料之製程開發," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available: https://hdl.handle.net/11296/5a5e77
[30]Stan, C., Beavers, C., Kunz, M., & Tamura, N. (2018). X-Ray Diffraction under Extreme Conditions at the Advanced Light Source. Quantum Beam Science, 2(1). https://doi.org/10.3390/qubs2010004
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明