博碩士論文 109521091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.135.214.208
姓名 呂宗諭(Zong-Yu Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 大功率雙向直流CLLLC諧振轉換器基於可模塊化並聯均流架構充放電系統
(High-Power Bidirectional DC CLLLC Resonant Converter Battery Charging System Based on Modular Parallel Current Sharing Architecture)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 各國為達成減碳政策,進一步加大電動車取代燃油車的力道,另外
與此並行的是綠能占比的提升,然而綠能發電因為不穩定的特性需要
某些電力調度的能力,電動車所帶來的 V2G能力能夠很好的作為儲能
設備來輔助調度,對於提升綠能占比有很大的幫助。
CLLLC常見於雙向電路架構,鑒於 文獻缺乏大功率應用的 CLLLC雙
向 系統, V2G能力 也就無法在大功率情形下 運用, 而未來電池快充站
很可能是電動車發展的關鍵, 因此本文欲設計一應用於充放電系統的
雙向大功率架構, 以期 V2G能有更高效的調度能力 除了 CLLLC針
對大功率需求做設計,並利用可模組化的並聯架構來進一步提升功率
容量 ,也因此加入自動主從控制策略來 改善 並聯架構的缺點,最後為求
貼近實務所需,加入 CC-CV電池充電控制策略 ,以讓本文開發的電路
架構能工作於充放電系統,將利用 Matlab-Simulink來 模擬驗證 系統 實
驗結果 。
摘要(英) In order to achieve carbon reduction policies, countries have further increased the power of electric vehicles to replace fuel vehicles, and in parallel with this is the increase in the proportion of green energy. However, due to the unstable characteristics of green energy power generation, certain power dispatching capabilities are required. Electric vehicles. The V2G capability brought by it can be used as an energy storage device to assist dispatching, which is of great help to increase the proportion of green energy.
CLLLC is commonly used in bidirectional circuit architecture. In view of the lack of CLLLC bidirectional system for high-power applications in the literature, the V2G capability cannot be used in high-power situations. In the future, battery fast charging stations are likely to be the key to the development of electric vehicles. Therefore, this paper intends to design a The bidirectional high-power architecture applied to the charging and discharging system is expected to have a more efficient scheduling capability for V2G. In addition to the CLLLC designed for high-power requirements, the modular parallel architecture is used to further improve the power capacity. From the control strategy to improve the shortcomings of the parallel architecture, finally, in order to be close to the practical needs, the CC-CV battery charging control strategy is added, so that the circuit architecture developed in this paper can work in the charging and discharging system, and Matlab-Simulink will be used to simulate and verify the system. Experimental results.
關鍵字(中) ★ EV
★ V2G
★ CLLLC
★ 均流控制
★ 充電控制
關鍵字(英) ★ EV
★ V2G
★ CLLLC
★ Current Sharing Control
★ Battery Charging Control
論文目次 論文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 5
1-3 論文架構 6
第二章 雙向直流轉換器 7
2-1 主流雙向直流轉換器 7
2-2 轉換器控制方法 21
第三章 並聯架構與均流控制 28
3-1 並聯架構 28
3-2 均流必要性探討 32
3-3 均流控制 35
第四章 實驗參數設計 46
4-1 電路穩態分析 46
4-2 元件參數分析 52
4-3 設計流程 59
4-4 充電控制策略 65
第五章 實驗與結果 68
5-1 實驗架構 68
5-2 實驗結果 73
第六章 結論與未來方向 86
6-1 結論 86
6-2 未來方向 86
第七章 參考文獻 88
參考文獻 [1] W. Han, R. Mal and L. Corradini, "Analysis and Design Methodology for ZVS Phase Shift Modulated Bidirectional CLLLC Resonant dc-dc Converters," 2019 21st European Conference on Power Electronics and Applications (EPE ′19 ECCE Europe), 2019, pp. P.1-P.10, doi: 10.23919/EPE.2019.8914864.
[2] W. Chen, S. Wang, X. Hong, Z. Lu and S. Ye, "Fully soft-switched bidirectional resonant dc-dc converter with a new CLLC tank," 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 1238-1242, doi: 10.1109/APEC.2010.5433345.
[3] J. Zeng, G. Zhang, S. S. Yu, B. Zhang and Y. Zhang, "LLC resonant converter topologies and industrial applications — A review," in Chinese Journal of Electrical Engineering, vol. 6, no. 3, pp. 73-84, Sept. 2020, doi: 10.23919/CJEE.2020.000021.
[4] Bhuvaneswari C. and R. S. R. Babu, "A review on LLC Resonant Converter," 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), 2016, pp. 620-623, doi: 10.1109/ICCPEIC.2016.7557268.
[5] J. Min and M. Ordonez, "Asymmetric Parameters Design for Bidirectional Resonant CLLC Battery Charger," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 5375-5379, doi: 10.1109/ECCE44975.2020.9236171.
[6] R. Lin and C. Lin, "Design criteria for resonant tank of LLC DC-DC
-85-
resonant converter," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp. 427-432, doi: 10.1109/IECON.2010.5674988.
[7] T. Yu, G. Sicheng and X. Shaojun, "Research on Open-loop Soft-start Strategy of CLLLC Bi-directional Resonant Converter," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1-6, doi: 10.1109/PEAC.2018.8590641.
[8] M. Yilmaz and P. T. Krein, "Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles," in IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151-2169, May 2013, doi: 10.1109/TPEL.2012.2212917.
[9] SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Couple,SAE Standard J1772,Jan. 2010.
[10] DC/DC Conversion Systems Consisting of Multiple Converter Modules: Stability, Control,and Experimental Verifications
[11] Y. Du, S. Lukic, B. Jacobson and A. Huang, "Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure," 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 553-560, doi: 10.1109/ECCE.2011.6063818.
[12] S. Mukherjee, A. Kumar and S. Chakraborty, "Comparison of DAB and LLC DC–DC Converters in High-Step-Down Fixed-Conversion-Ratio (DCX) Applications," in IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4383-4398, April 2021, doi: 10.1109/TPEL.2020.3019796.
[13] R. L. Steigerwald, "A comparison of half-bridge resonant converter topologies," in IEEE Transactions on Power Electronics, vol. 3, no. 2, pp. 174-182, April 1988, doi: 10.1109/63.4347.
[14] S. De Simone, C. Adragna, C. Spini and G. Gattavari, "Design-oriented steady-state analysis of LLC resonant converters based on FHA," International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006., 2006, pp. 200-207, doi: 10.1109/SPEEDAM.2006.1649771.
[15] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen and J. -S. Lai, "Design of Bidirectional DC–DC Resonant Converter for Vehicle-to-Grid (V2G) Applications," in IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 232-244, Oct. 2015, doi: 10.1109/TTE.2015.2476035.
[16] J. Jung, H. Kim, M. Ryu and J. Baek, "Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems," in IEEE Transactions on Power
-86-
Electronics, vol. 28, no. 4, pp. 1741-1755, April 2013, doi: 10.1109/TPEL.2012.2213346.
[17] H. -T. Chang, T. -J. Liang and W. -C. Yang, "Design and Implementation of Bidirectional DC-DC CLLLC Resonant Converter," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 2712-2719, doi: 10.1109/ECCE.2018.8557697.
[18] S. Ditze, "Steady-state analysis of the bidirectional CLLLC resonant converter in time domain," 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), 2014, pp. 1-9, doi: 10.1109/INTLEC.2014.6972179.
[19] Z. Peng, X. Chen, B. Liu, Y. Chen, J. Gu and R. Li, "Research on the strategy of parallel wide range bidirectional DC-DC converter," 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2021, pp. 302-306, doi: 10.1109/WiPDAAsia51810.2021.9656021.
[20] Y. Wei, D. Woldegiorgis and A. Mantooth, "Control Strategies Overview for LLC Resonant Converter with Fixed Frequency Operation," 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2020, pp. 63-68, doi: 10.1109/PEDG48541.2020.9244388.
[21] P. Kowstubha, K. Krishnaveni and K. Ramesh Reddy, "Review on different control strategies of LLC series resonant converters," 2014 International Conference on Advances in Electrical Engineering (ICAEE), 2014, pp. 1-4, doi: 10.1109/ICAEE.2014.6838481.
[22] Lizhi Wang, Yusheng Sun , Xiaohong Wang ,*, Zhuo Wang and Xuejiao Zhao, "Reliability Modeling Method for Lithium-ion Battery Packs Considering the Dependency of Cell Degradations Based on a Regression Model and Copulas," Materials 2019, 12, 1054; doi:10.3390/ma12071054
[23] H. Wang and Z. Li, "A PWM LLC Type Resonant Converter Adapted to Wide Output Range in PEV Charging Applications," in IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3791-3801, May 2018, doi: 10.1109/TPEL.2017.2713815.
指導教授 陳正一 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明