博碩士論文 109521131 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.218.94.164
姓名 林冠翰(GUAN-HAN LIN)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用轉導提升技術暨中和穩定電容技術之操作於K與Ka頻段CMOS製程放大器研製
(Design of K and Ka-Band CMOS Amplifiers Using Gm-Boost and Neutralization Techniques)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-31以後開放)
摘要(中) 在微波及毫米波接收機系統中,低雜訊放大器(LNA)為其前端關鍵積體電路。低雜訊放大器的主要功能是將天線接收之訊號放大後傳遞至下級電路。除了基本的增益與雜訊指數的要求外,低功耗與高線性度也是設計目標。在微波發射機系統中,功率放大器亦為其關鍵電路,隨著第五代通訊的發展成熟,位於毫米波頻段之高輸出功率放大器需求逐漸增加,高輸出功率與高線性度與寬頻之功率放大器相繼被提出,功率放大器在發射機系統通常為最耗電的元件,因此使用較低直流功耗與較節省面積的方式是功率放大器設計的趨勢。本論文的研究目標在低雜訊放大器方面期望能達到低功耗與高增益與高線性度為主,主要設計於K頻段與Ka頻段,並使用CMOS製程設計。功率放大器方面的研究目標則是以寬頻為設計目標,同樣設計於K頻段與Ka頻段,並使用CMOS製程設計。
第二章提出使用台積電90 nm製程設計的低雜訊放大器,該放大器操作於Ka頻段。為達到低功耗與高增益的特性,使用轉導提升架構與中和穩定電容架構,在提高增益的同時提高電路的穩定性,使用電流再利用架構以降低功耗,並以兩級架構實現。電路最大增益達到7.5 dB,最小雜訊指數為4.9 dB,晶片面積為0.37 mm2。
第三章提出使用台積電0.18 µm製程設計的低雜訊放大器,該放大器操作於K頻段。本次設計使用雙重變壓器架構以提升增益,使用源極退化電感以降低雜訊指數,同時透過在電晶體的Body端外接偏壓以改善線性度,另外同樣使用電流再利用架構以降低功耗。該電路以兩級疊接架構實現。電路最大增益為18.2 dB,最小雜訊指數為5.7 dB,晶片面積為0.53 mm2。
第四章分別提出使用台積電0.18 µm製程設計的功率放大器與台積電90 nm製程設計的功率放大器。使用台積電0.18 µm製程設計的功率放大器操作於K頻段,本次設計使用變壓器架構以達到增益寬頻的效果,該電路以兩級疊接架構組成。電路最大增益為19 dB,3 dB頻寬為20 GHz至26.1GHz,輸出1dB增益壓縮點為12.4 dBm,飽和輸出功率為16.1 dBm,輸出三階斷點為26 dBm。晶片面積為0.53 mm2。使用台積電90 nm製程設計的功率放大器則操作於Ka頻段,該電路設計以中和穩定電容架構提升電路的增益與穩定性,該電路以四路疊接架構組合而成。電路最大增益為12.5 dB,3 dB頻寬為28.3 GHz至42.6 GHz,輸出1dB增益壓縮點為10.3 dBm,飽和輸出功率為18.6 dBm,輸出三階斷點為20 dBm。晶片面積為0.49 mm2。
於論文的最後,第五章為本論文的總結。
摘要(英) In microwave and millimeter-wave receiver systems, the Low Noise Amplifier (LNA) is a crucial integrated circuit at the front end. The primary function of the LNA is to amplify signals received by the antenna before transmitting them to the subsequent circuits. In addition to basic requirements such as gain and noise figure, low power consumption and high linearity are also design goals. In microwave transmitter systems, the Power Amplifier (PA) is another key circuit. With the development of fifth-generation communication, the demand for high-output power amplifiers in the millimeter-wave frequency band is gradually increasing. Amplifiers with high output power, high linearity, and wide bandwidth have been proposed. Power amplifiers are typically the most power-consuming components in transmitter systems, so designing them with lower DC power consumption and a more compact footprint is a trend.The research objectives of this thesis focus on achieving low power consumption, high gain, and high linearity for LNAs, primarily designed for the K-band and Ka-band using CMOS technology. For power amplifiers, the research goal is to achieve broadband performance, also designed for the K-band and Ka-band using CMOS technology.

Chapter 2 introduces a low noise amplifier designed using TSMC 90 nm process, operating in the Ka-band. To achieve low power consumption and high gain, a transconductance-boosting architecture and neutralization with stable capacitor architecture were employed to increase stability while improving gain. Current reuse architecture was used to reduce power consumption, implemented in a two-stage structure. The circuit achieved a maximum gain of 7.5 dB, a minimum noise figure of 4.9 dB, and a chip area of 0.37 mm2.


Chapter 3 presents a low noise amplifier designed using TSMC 0.18 µm process, operating in the K-band. The design utilizes a dual transformer architecture to enhance gain, source degeneration inductor to reduce noise figure, and an external bias on the transistor′s Body terminal to improve linearity. Additionally, a current reuse architecture was employed to reduce power consumption, implemented in a two-stage stacked structure. The circuit achieved a maximum gain of 18.2 dB, a minimum noise figure of 5.7 dB, and a chip area of 0.53 mm2.

Chapter 4 introduces power amplifiers designed using TSMC 0.18 µm and TSMC 90 nm processes. The power amplifier designed with TSMC 0.18 µm operates in the K-band, utilizing a transformer architecture to achieve broadband gain. The circuit, composed of a two-stage stacked structure, achieved a maximum gain of 19 dB, a 3 dB bandwidth from 20 GHz to 26.1 GHz, 1 dB compression point of 12.4 dBm, saturation output power of 16.1 dBm, and a third-order output intercept point of 26 dBm. The chip area is 0.53 mm2. The power amplifier designed with TSMC 90 nm operates in the Ka-band, employing a neutralization with stable capacitor architecture to enhance gain and stability, configured in a four-way stacked structure. The circuit achieved a maximum gain of 12.5 dB, a 3 dB bandwidth from 28.3 GHz to 42.6 GHz, 1 dB compression point of 9.2 dBm, saturation output power of 18 dBm, and a third-order output intercept point of 20 dBm. The chip area is 0.49 mm2.

Finally, Chapter 5 concludes the thesis.
關鍵字(中) ★ 低雜訊放大器
★ 功率放大器
關鍵字(英) ★ Low Noise Amplifier
★ Power Amplifier
論文目次 目錄
摘要 ii
Abstract iv
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xvii
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 2
1.4 論文架構 2
第二章 使用轉導提升與中和穩定技術的Ka頻段低雜訊放大器 3
2.1 簡介 3
2.2 電路設計分析 3
2.2.1 轉導提升架構分析 3
2.2.2 電流再利用架構分析 16
2.2.3 中和穩定電容分析 17
2.2.4 偏壓與電晶體尺寸與中和穩定電容挑選 22
2.3 電路模擬與量測 34
2.4 電路除錯分析 39
2.5 總結 46
第三章 使用雙重變壓器架構的K頻段低雜訊放大器 48
3.1 簡介 48
3.2 電路設計與分析 48
3.2.1 雙重變壓器分析 49
3.2.2 線性度改善分析 55
3.2.3偏壓與電晶體尺寸與源極退化電感挑選 58
3.3 電路模擬與量測 67
3.4 電路除錯分析 76
3.5 總結 94
第四章 K頻段與Ka頻段功率放大器 96
4.1 簡介 96
4.2 電路設計分析 97
4.2.1 使用變壓器回授架構與疊接架構的K頻段功率放大器 97
4.2.2 使用中和穩定電容的Ka頻段功率放大器 107
4.3 電路模擬與量測 121
4.3.1 使用變壓器架構與疊接架構的K頻段功率放大器 121
4.3.2 使用中和穩定技術的Ka頻段功率放大器 131
4.4 電路除錯分析 136
4.4.1 使用變壓器架構與疊接架構的K頻段功率放大器 136
4.4.2 使用中和穩定電容的Ka頻段功率放大器 139
4.5 總結 142
第五章 結論 144
參考文獻 145
參考文獻 [1] A. K. Goel and A. Kalia, “Comparison of NMOS, CMOS and GaAs technologies,”
Circuits and Systems, Proceedings of the 32nd Midwest Symposium, Champaign,
IL, 1989, pp. 1238–1241 vol.2.
[2] Yiming Yu, Huihua Liu, Yunqiu Wu, Kai Kang, "A 54.4–90 GHz Low-Noise Amplifier in 65- nm CMOS", IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 2892-2904, 2017
[3] Y. Wang, T.-Y. Chiu, C.-C. Chien, W.-H Tsai, and H. Wang, “An E-Band high-performance variable gain low noise amplifier for wireless communications in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1095–1098, Sep. 2022.
[4] Hongchen Chen, Liang Wu, Wenquan Che, Quan Xue, and Haoshen Zhu, “A Wideband LNA Based on Current-Reused CS-CS Topology and Gm-boosting Technique for 5G Application,” 2019 IEEE Asia-Pacific Microwave Conference (APMC)
[5] M. M. Assefzadeh and A. Babakhani, "Multi-order transmission line-radial stub networks for broadband impedance matching and power combining in a watt-level silicon power amplifier," Wireless and Microwave Circuits and Systems ,pp. 1-3, Sept 2018.
[6] Bernardo Leite, Eric Kerhervé and A. Babakhani, "Design of 28 nm CMOS integrated transformers for a 60 GHz power amplifier," 2015 28th Symposium on Integrated Circuits and Systems Design (SBCCI)
[7] Y. Cao, H. Lyu and K. Chen, "Wideband Doherty power amplifier in quasi-balanced configuration," IEEE Wireless and Microwave Technology Conference, pp. 1-4, April 2019.
[8] David J. Allstot, Xiaoyong Li, and Sudip Shekhar, “Design Considerations for CMOS Low-Noise Amplifiers,” in Proc. IEEE Radio Frequency Integrated Circuits(RFIC) Symp., June, 2004, pp. 97-100

[9] 陳冠宇,「微波毫米波寬頻高效率頻率倍頻器之研製」,國立中央大學,博士論文,民國103年。
[10] Kai-Chun Chang, Yunshan Wang, and Huei Wang, “Design of a 1.8-mW K-Band low noise amplifier with 19.3-dB gain and 3.3-dB noise figure in 90-nm CMOS,” Asia Pacific Microwave Conference Technical Diges, Brisbane, Australia, Nov. 2021
[11] Sudip Shekhar, Jeffery S. Walling, Sankaran Aniruddhan, and David J. Allstot, “CMOS VCO and LNA Using Tuned-Input Tuned-Output Circuits,” IEEE Journal of Solid-State Circuits
[12] Jun-Kai Wang, Yu-Hsuan Lin, Yuan-Hung Hsiao, Kuang-Sheng Yeh, and Huei Wang, “A V-band power amplifier with transformer combining and neutralization technique in 40-nm CMOS,” IEEE International Symposium of Radio Frequency Integrated Technology, Seoul, Korea, Jun. 2017
[13] Hongchen Chen, Liang Wu, Wenquan Che, Quan Xue, and Haoshen Zhu, “A Wideband LNA Based on Current-Reused CS-CS Topology and Gm-boosting Technique for 5G Application,” IEEE Asia-Pacific Microwave Conference (APMC), 2019
[14] Ruitao Wang, Chenguang Li, Jian Zhang, Sen Yin, Wei Zhu, and Yan Wang, “A 18–44 GHz Low Noise Amplifier With Input Matching and Bandwidth Extension Techniques,” IEEE Microwave and Wireless Components Letters, 2022
[15] 蔡智斌,「Ka 頻段輻射計接收機暨 Ku 頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國109年。
[16] Mahsa Keshavarz Hedayati, Abdolali Abdipour, Reza Sarraf Shirazi, Cagri Cetintepe, and Robert Bogdan Staszewski, “A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2018
[17] Yaolong Hu and Taiyun Chi, “A 27–46-GHz Low-Noise Amplifier With Dual-Resonant Input Matching and a Transformer-Based Broadband Output Network,” IEEE Microwave and Wireless Components Letters, 2021
[18] Yu-Teng Chang, Tai-Yi Lin, and Hsin-Chia Lu, “A Low Power Wideband V-Band LNA Using Double-Transformer-Coupling Technique and T-Type Matching in 90nm CMOS,” 2019 14th European Microwave Integrated Circuits Conference (EuMIC)
[19] Abdurrahman H. Aljuhani, Tumay Kanar, and Gabriel M. Rebeiz, “A Packaged Single-Ended K-Band SiGe LNA with 2.14 dB Mean Noise Figure,” 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)
[20] Hongchen Chen, Liang Wu, Wenquan Che, Quan Xue, and Haoshen Zhu, “A Wideband LNA Based on Current-Reused CS-CS Topology and Gm-boosting Technique for 5G Application,” 2019 IEEE Asia-Pacific Microwave Conference (APMC)
[21] Yu-Min Chen, Yunshan Wang, Chau-Ching Chiong, and Huei Wang, “A 21.5-50 GHz Low Noise Amplifier in 0.15-μm GaAs pHEMT Process for Radio Astronomical Receiver System,” 2021 IEEE Asia-Pacific Microwave Conference (APMC)
[22] Yi-Wen Huang, Chia-Sung Chiu, Kun-Ming Chen, Guo-Wei Huang, Chia-Wei Chuang, Chao-Wen Lin, and Lin-Kun Wu, “A Low Power, Wideband Low-Noise Amplifier with Current-Reused Techniques in 0.18-μm CMOS for 5G Wireless Systems,” 2022 Asia-Pacific Microwave Conference (APMC)
[23] Depeng Cheng, Lianming Li, Min Xie, Xu Wu, Long He, and Bin Sheng “A K-Band Variable Gain Low-Noise Amplifier with Low Phase Variation in 65-nm CMOS,” 2021 IEEE MTT-S International Wireless Symposium (IWS)
[24] Hanwen Zhang, Qin Li, and Leijun Xu “A K-band Single-to-Differential Broadband Low Noise Amplifier with LC Anti-interference Network,” 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT)
[25] Wei-Cheng Huang, and Huei Wang “An Inductive-Neutralized 26-dBm K-/Ka-Band Power Amplifier With 34% PAE in 90-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, Nov. 2019
[26] Chieh-Wei Wang, Yu-Chun Chen, Wen-Jie Lin, Jeng-Han Tsai, and Tian-Wei Huang “A 20.8-41.6-GHz Transformer-Based Wideband Power Amplifier with 20.4-dB Peak Gain Using 0.9-V 28-nm CMOS Process,”2020 IEEE/MTT-S International Microwave Symposium (IMS)
[27] Bo-Ze Lu, Yunshan Wang, Zhi-Jia Huang, Kun-You Lin, and Huei Wang “A 28-GHz High Linearity and High Efficiency Class-F Power Amplifier in 90-nm CMOS Process for 5G Communications,” 2020 15th European Microwave Integrated Circuits Conference (EuMIC)
[28] Chongyu Yu, Jun Feng, and Dixian Zhao “A Ka-band 65-nm CMOS neutralized medium power amplifier for 5G phased-array applications,” 2018 IEEE MTT-S International Wireless Symposium (IWS)
[29] Sherif Shakib, Hyun-Chul Park, Jeremy Dunworth, Vladimir Aparin, and Kamran Entesari “A 28 GHz Efficient Linear Power Amplifier for 5G Phased Arrays in 28nm Bulk CM,” 2016 IEEE International Solid-State Circuits Conference
[30] Shuo-Hsuan Chang, Chun-Nien Chen, and Huei Wang “A K a-Band Dual-Mode Power Amplifier in 65-nm CMOS Technology,” IEEE Microwave and Wireless Components Letters , vol. 28, no. 8, August 2018
[31] J.R. Long, “Monolithic transformers for silicon RF IC design,” 2000 IEEE International Solid-State Circuits Conference
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2024-3-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明