參考文獻 |
[1] Hua Yu Gou, Yu Chen, Mian Gang Tang, Rui Bin Zhao, Xin Shuai Tan, and Li Yan, "Dynamic-Switching Energy Dissipation Behaviorsof Cryogenic Power MOSFET at 77 K," IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, Nov. 2021.
[2] Arnout Beckers, Farzan Jazaeri, Andrea Ruffino, Claudio Bruschini, Andrea Baschirotto, and Christian Enz, "Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing, " European Solid-State Device Research Conference, pp. 62-65, Sep. 2017
[3] Davide Braga, Shaorui Li, and Farah Fahim, "Cryogenic Electronics Development for High-Energy Physics: An Overview of Design Considerations, Benefits, and Unique Challenges," IEEE Solid-State Circuits Magazine, vol. 13, no. 2, pp. 36-45, Spring 2021.
[4] Arnout Beckers, Farzan Jazaeri, and Christian Enz, "Inflection Phenomenon in Cryogenic MOSFET Behavior," IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1357-1360, March 2020.
[5] Andrea Ruffino, Yatao Peng, Fabio Sebastiano, Masoud Babaie, and Edoardo Charbon, "A 6.5-GHz cryogenic all-pass filter circulator in 40-nm CMOS for quantum computing applications," IEEE Radio Freq. Integr.Circuits Symp (RFIC), pp. 107–110, Jun. 2019.
[6] Shirin Montazeri, Wei-Ting Wong, Ahmet H. Coskun, and Joseph C. Bardin, "Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 178–187, Jan. 2016.
[7] Bishnu Patra, Rosario M. Incandela, Jeroen P. G. van Dijk, Harald A. R. Homulle, Lin Song, Mina Shahmohammadi, Robert Bogdan Staszewski, Andrei Vladimirescu, Masoud Babaie, Fabio Sebastiano, and Edoardo Charbon, "Cryo-CMOS Circuits and Systems for Quantum Computing Applications,"IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018.
[8] E. Schriek, F. Sebastiano and E. Charbon, "A Cryo-CMOS Digital Cell Library for Quantum Computing Applications," IEEE Solid-State Circuits Letters, vol. 3, pp. 310-313, 2020.
[9] S. Bonen, U. Alakusu, Y. Duan, M. J. Gong, M. S. Dadash, L. Lucci, D. R. Daughton, G. C. Adam, S. Iordănescu;M. Pǎşteanu, I. Giangu, H. Jia, L. E. Gutierrez, W. T. Chen, N. Messaoudi, D. Harame, A. Müller, R. R. Mansour, P. Asbeck, and S. P. Voinigescu, "Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs," IEEE Electron Device Letters, vol. 40, no. 1, pp. 127-130, Jan. 2019.
[10] Yuan Chen, Lynett Westergard, Curtis Billman, Rosa Leon, Tuan Vo, Mark White, Mohammad Mojarradi, and Elizabeth Kolawa, "Cryogenic Reliability Impact on Analog Circuits at Extreme Low Temperatures," IEEE International Reliability Physics Symposium Proceedings, pp. 156-160, 2007.
[11] A. Grill, E. Bury, J. Michl, S. Tyaginov, D. Linten, T. Grasser, B. Parvais, B. Kaczer, M. Waltl, and I. Radu, "Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures," IEEE International Reliability Physics Symposium (IRPS), pp. 1-6, 2020.
[12] M. Song, K. P. MacWilliams, and J. C. S. Woo, "Comparison of NMOS and PMOS hot carrier effects from 300 to 77 K," IEEE Transactions on Electron Devices, vol. 44, no. 2, pp. 268-276, Feb. 1997.
[13] W. Chakraborty, U. Sharma, S. Datta and S. Mahapatra, "Hot Carrier Degradation in Cryo-CMOS," IEEE International Reliability Physics Symposium (IRPS), pp. 1-5, 2020.
[14] R. L. Anderson, "The case for cryoelectronics," First International Caracas Conference on Devices, Circuits and Systems, pp. 1-5, 1995.
[15] Michele Spasaro, Shai Bonen, Gregory Cooke, Thomas Jager, Tan D. Nhut, Dario Sufra, Sorin P. Voinigescu, Domenico Zito, "Cryogenic Compact Low-Power 60GHz Amplifier for Spin Qubit Control in Monolithic Silicon Quantum Processors," IEEE/MTT-S International Microwave Symposium - IMS, pp. 164-167, 2022.
[16] P. Crozat, D. Bouchon, J. C. Henaux, F. Aniel, R. Adde and G. Vernet, "Cryogenic on-chip high frequency device characterization," ESSDERC ′93: 23rd European solid State Device Research Conference, pp. 531-534, 1993.
[17] D. Frank, S. Laux, and M. Fischetti, "Monte Carlo Simulation of a 30 nm Dual-gate MOSFET: How Shor Can Si Go?," International Technical Digest on Electron DevicesMeeting, San Francisco, CA, pp 2.1.1-2.1.4, 1992.
[18] H. S. Wong, D. J. Frank, and P. M. Solomon, "Device Design Consideration forDouble-gate, Ground-plane, and Single-gate Ultra-thin SOI MOSFETs at the 25 nmChannel Length Generation," International Electron Devices Meeting TechnicalDigest, Safransico, CA, pp. 407-410, 1998.
[19] A. Gill, C. Madhu and P. Kaur, "Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology," Annual IEEE India Conference (INDICON), pp. 1-4, 2015.
[20] Qintao Zhang, Cindy Wang, Hailing Wang, Christopher Schnabel, Dae-Gyu Park, Scott K. Springer, and Effendi Leobandung, "Experimental Study of Gate-First FinFET Threshold-Voltage Mismatch," IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 643-646, Feb. 2014.
[21] P. Jay and A. D. Darji, "Analysis of the source/drain parasitic resistance and capacitance depending on geometry of FinFET," Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 298-301, 2015.
[22] Arnout Beckers, Farzan Jazaeri, and Christian Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors," IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, Feb. 2020.
[23] Katia R. A. Sasaki, Eddy Simoen, Cor Claeys, and Joao A. Martino, "DIBL in enhanced dynamic threshold operation of UTBB SOI with different drain engineering at high temperatures," Symposium on Microelectronics Technology and Devices (SBMicro), pp. 1-4, 2016.
[24] H. E. Ghitani, "DIBL coefficient in short-channel NMOS transistors," Proceedings of the Sixteenth National Radio Science Conference. NRSC′99 (IEEE Cat. No.99EX249), pp. D4/1-D4/5, 1999.
[25] Naoyoshi Tamura, Yosuke Shimamune and Hirotaka Maekawa, "Embedded silicon germanium (eSiGe) technologies for 45nm nodes and beyond," International Workshop on Junction Technology, pp. 73-77, 2008.
[26] C. T. Hsu, M. M. Lau, Y. T. Yeow and Z. Q. Yao, "Analysis of hot-carrier-induced degradation in MOSFETs by gate-to-drain and gate-to-substrate capacitance measurements," IEEE International Reliability Physics Symposium Proceedings, pp. 98-102, 2000.
[27] S. Trabelsi, "Frequency and temperature dependence of dielectric properties of chicken meat," IEEE International Instrumentation and Measurement Technology Conference Proceedings, pp. 1515-1518, 2012.
[28] J.-P. Colinge, A.J. Quinn, L. Floyd, G. Redmond, J.C. Alderman, Weize Xiong, C.R. Cleavelin, T. Schulz, K. Schruefer, G. Knoblinger, and P. Patruno, "Low-temperature electron mobility in Trigate SOI MOSFETs," IEEE Electron Device Letters, vol. 27, no. 2, pp. 120-122, Feb. 2006.
[29] Hiroshi Oka, Takumi Inaba, Shota Iizuka, Hidehiro Asai, Kimihiko Kato, and Takahiro Mori, "Effect of Conduction Band Edge States on Coulomb-Limiting Electron Mobility in Cryogenic MOSFET Operation," IEEE Symposium on VLSI Technology and Circuits, pp. 334-335, 2022.
[30] Kensuke Ota, Masumi Saitoh, Yukio Nakabayashi, Takamitsu Ishihara, Toshinori Numata, and Ken Uchida, "Threshold voltage shift and drain current degradation by NBT stress in Si (110) pMOSFETs," Proceedings of the European Solid State Device Research Conference, pp. 134-137, 2010.
[31] Ali Khakifirooz, Osama M. Nayfeh, and Dimitri Antoniadis, "A Simple Semiempirical Short-Channel MOSFET Current–Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters," IEEE Transactions on Electron Devices, vol. 56, no. 8, pp. 1674-1680, Aug. 2009.
[32] Shaloo Rakheja, Mark S. Lundstrom, and Dimitri A. Antoniadis, "An Improved Virtual-Source-Based Transport Model for Quasi-Ballistic Transistors—Part I: Capturing Effects of Carrier Degeneracy, Drain-Bias Dependence of Gate Capacitance, and Nonlinear Channel-Access Resistance," IEEE Transactions on Electron Devices, vol. 62, no. 9, pp. 2786-2793, Sept. 2015.
[33] SÉbastien Martinie, Gilles Le Carval, Daniela Munteanu, S. Soliveres, and Jean-Luc Autran, "Impact of Ballistic and Quasi-Ballistic Transport on Performances of Double-Gate MOSFET-Based Circuits," IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2443-2453, Sept. 2008.
[34] N. Serra, P. Palestri, G.D.J. Smit, and L. Selmi, "The impact of increased deformation potential at MOS interface on quasi-ballistic transport in ultrathin channel MOSFETs scaled down to sub-10 nm channel length," IEEE International Electron Devices Meeting, pp. 12.1.1-12.1.4, 2013.
[35] Hideaki Tsuchiya and Shin-ichi Takagi, "Influence of Elastic and Inelastic Phonon Scattering on the Drive Current of Quasi-Ballistic MOSFETs," IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2397-2402, Sept. 2008.
[36] N. Serra, P. Palestri, G. D. J. Smit and L. Selmi, "The impact of longitudinal nonuniform fin-thickness on quasi-ballistic transport in FinFETs," 2008 9th International Conference on Ultimate Integration of Silicon, pp. 75-78, 2008.
|