博碩士論文 109521155 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.141.201.209
姓名 劉承瑞(Cheng-Rui Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 H2電漿處理之超薄IGZO種子層的低電壓 鐵電電容器以實現30ns/3V讀寫速度且高儲存密度之每單元3位元FeNAND快閃記憶體
(H2 Plasma Treatment in IGZO-Based FeCAP for Enhancing Storage Capacity, Switching Speed, and Endurance/Retention)
相關論文
★ 可實現高溫資料保留、多層儲存單元與高耐久度鐵電電晶體之多功能閘極與HfO2/ZrO2超晶格堆疊研究★ 實現瞬時讀取且長耐久性(>10^12次)之三位 元鐵電場效應電晶體製程技術與可靠度分析
★ 應力工程和表面能對p型氧化錫(SnO)寬能隙相穩定化的影響★ 高速、低能耗、微型1T-PMOS TRNG陣列的設計和特性描述
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們使用In-Ga-Zn-O (IGZO)通道材料與超晶格HfO_2/ZrO_2(SL-HZO)結合,搭配3000W低熱預算的微波退火技術,製造了nearly wake-up free之金屬-鐵電-半導體-金屬(MFSM)電容器。為了消除在ALD生長過程中的碳汙染,我們使用H_2電漿實現了高品質的IGZO/HZO界面,並被X射線光電子能譜學(XPS)證實。經過遠程氫電漿處理提升了極化量Pr與矯頑場Ec,達到了2Pr: 40 μC/cm2 及 Ec: 2.33 MV/cm,使其實現了低功耗 30ns 的寫入速度與均勻的 8 state-per-cell 的儲存密度。高品質的介面確保了 10^8次循環的耐久性以及在超過90°C 溫度下穩定的10年數據保存能力。這種閘級堆疊結構為未來AI記憶計算提供了一條新的途徑。
摘要(英) In this study, we integrated IGZO channel with a superlattice of HfO_2/ZrO_2 (SL-HZO) under low-thermal-budget microwave annealing to produce a nearly wake-up free ferroelectric capacitors (FeCAP). To eliminate the impact of trap-charges during the atomic layer deposition (ALD) process, we conducted H_2 plasma treatment to eliminate leak defects induced by carbon contamination and maintain neutrality to achieve high-quality IGZO/HZO interfaces, confirmed by X-ray photoelectron spectroscopy (XPS). The H_2 plasma treatment improved polarization (Pr) and coercive field (Ec), reaching 2Pr: 40 μC/cm^2 and Ec: 2.33 MV/cm, enabling a low-power writing speed of 30ns with 8 states (3 bits per cell). The defect engineering method ensures endurance of up to 10^8 cycles and retains 10-year data storage at 90°C. This research provides a new avenue for improving emerging oxide interfaces controlled by ferroelectric polarization.
關鍵字(中) ★ 鐵電記憶體
★ 鐵電電容
★ 銦鎵鋅氧化物
★ 多位元儲存器
關鍵字(英) ★ FeNAND
★ FeCAP
★ IGZO
★ MLC storage
論文目次 摘要 ..................................................... I
ABSTRACT................................................. II
致謝.....................................................III
目錄 ......................................................V
圖目錄 ................................................. VII
第一章 序論與文獻回顧 ..................................... 1
1.1 鐵電 .............................................. 1
1.1.1 傳統鐵電材料與現今鐵電薄膜 ....................... 1
1.1.2 記憶體應用 ..................................... 3
1.2 鐵電極化機制模型 .................................... 5
1.3 新穎氧化鉿鋯鐵電薄膜(FE-HF1-XZRXO2, HZO) .............. 6
1.3.1 氧空缺、喚醒與疲勞效應 ........................... 6
1.3.2 電荷捕捉效應、去極化電場與印痕效應 ................ 7
1.4 金屬氧化物通道 ..................................... 9
1.4.1 金屬氧化物半導體的特性與應用.......................... 9
1.4.2 鐵電材料與金屬氧化物通道的結合 ...................... 10
第二章 實驗製程 .......................................... 31
2.1 製程流程 ............................................ 31
2.2 薄膜製程 ............................................ 31
2.3 黃光製程 ............................................ 32
2.4 蝕刻製程 ............................................ 32
2.5 低熱預算退火製程、氫電漿處理 .......................... 33
第三章 鐵電電容電性量測 ................................... 40
3.1 PUND量測技術 ........................................ 40
3.2 高溫保留度測試 ....................................... 40
3.3 多層儲存單元操作量測 ................................. 41
3.4耐久度評估 ........................................... 41
3.5 切換速度量測方法 ..................................... 42
第四章 實驗結果與討論 .................................... 48
4.1 超晶格層狀堆疊HZO .................................... 48
4.2 遠程氫電漿處理對鐵電材料的影響 ........................ 49
4.2.1 極化表現分析 ....................................... 49
4.2.2 高溫保留度分析 ..................................... 50
4.2.3 鉿/鋯亞氧化物比例影響分析 ........................... 51
4.2.4 碳含量變化分析 ..................................... 51
4.2.5 高可靠度三層儲存單元操作 ............................ 52
4.2.6 耐久性影響 ........................................ 52
4.3 極化切換動力學分析 ................................... 53
第五章 結論與未來展望 .................................... 65
參考文獻 ................................................ 66
參考文獻 [1] Jia-Nan Wei et al., “Ionizing radiation effect on single event upset sensitivity of ferroelectric random access memory,” Chinese Phys., B 26 096102, 2017.
[2] J. Valasek, “Piezoelectric and Allied Phenomena in Rochelle Salt,” Phys. Rev., 17, 475–81, 1921.
[3] Busch G. and Sccherrer P. Naturwiss, 23,737, 1935.
[4] J. Müller, E. Yurchuk, T. Schlösser et al., “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG.” Symposium on VLSI Technology (VLSIT), pp. 25-26, 2012.
[5] N. Gong, T. P. Ma, “Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled
Nonvolatile 1-T Memory Cell? A Retention Perspective,” IEEE Electron Device Letters, vol. 37, pp. 1123-1126, 2016.
[6] T. Böscke, J. Müller, D. Braeuhaus, et al., “Ferroelectricity in Hafnium Oxide Thin Films,” Applied Physics Letters, vol. 99, pp. 102903-102903, 2011.
[7] S. Mueller, C. Adelmann, A. Singh, et al., “Ferroelectricity in Gd-Doped HfO2
Thin 79 Films,” ECS Journal of Solid State Science and Technology, vol. 1, pp. N123
N126, 2012.
[8] T. Olsen, U. Schröder, S. Müller, et al., “Co-sputtering yttrium into hafnium oxide
thin films to produce ferroelectric properties,” Applied Physics Letters, vol. 101, pp.
082905, 2012.
[9] S. Mueller, J. Mueller, A. Singh, et al., “Incipient Ferroelectricity in Al-Doped
HfO2 Thin Films,” Advanced Functional Materials, vol. 22, pp. 2412-2417, 2012.
[10] M. H. Park, Y. H. Lee, H. J. Kim, et al., “Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment,” Nanoscale, vol. 9, pp. 9973-9986, 2017.
[11] M. H. Park et al., “A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants,” J. Mater. Chem. C, 5, 4677-4690, 2017.
[12] T. Shimizu et al., “Ferroelectricity in HfO2 and related ferroelectrics,” Journal of
the Ceramic Society of Japan, 126, 667-674, 2018.
[13] J. Müller, T. S. Böscke, D. Bräuhaus, et al., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 99, pp. 112901, 2011.
[14] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A.
Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, “Ferroelectricity and Antiferroelectricity of doped thin HfO2-based films,” Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015.
[15] J. Müller, T. S. Böscke, U. Schröder, et al., “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, pp. 4318-4323, 2012.
[16] Seungyeol Oh et al., “Effect of dead layers on the ferroelectric property of ultrathin HfZrOx film,” Appl. Phys. Lett. 117, 252906, 2020.
[17] Ju Yong Park et al., “Revival of Ferroelectric Memories Based on Emerging Fluorite-Structured Ferroelectrics,” Adv. Mater., vol. 35 issue. 43, 2023.
[18] J. Okuno et al., “SoC Compatible 1T1C FeRAM Memory Array Based on Ferroelectric Hf0.5Zr0.5O2,” 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020.
[19] Halid Mulaosmanovic et al., “Ferroelectric field-effect transistors based on HfO2: a review,” Nanotechnology 32 502002, 2021.
[20] S. Dünkel et al., “A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond,” 2017 IEEE International Electron Devices Meeting (IEDM), pp. 19.7.1-19.7.4, San Francisco, CA, USA, 2017.
[21] Toprasertpong, K. et al., “On the strong coupling of polarization and charge trapping in HfO2/Si-based ferroelectric field-effect transistors,” Appl. Phys. A 128, 1114, 2022.
[22] Y. W. Yin et al., “Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface,” J. Appl. Phys. 117, 172601, 2015.
[23] T. Mikolajick et al., “Next generation ferroelectric materials for semiconductor process integration and their applications,” J. Appl. Phys. 129, 100901, 2021.
[24] M. Hoffmann, M. Pešić, K. Chatterjee, et al., “Direct Observation of Negative
Capacitance in Polycrystalline Ferroelectric HfO2,” Advanced Functional Materials, vol. 26, pp. 8643-8649, 2016.
[25] N. Gong, X. Sun, H. Jiang, et al., “Nucleation limited switching (NLS) model for HfO2 based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics,” Applied Physics Letters, vol. 112, pp. 262903, 2018.
[26] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,”
Physical Review B vol. 82, pp. 014109, 2010.
[27] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,”
Physical Review B vol. 82, pp. 014109, 2010.
[28] Song, Seul Ji et al., “Alternative interpretations for decreasing voltage with
increasing charge in ferroelectric capacitors,” Scientific reports 6.1, 2016.
[29] Sang Mo Yang et al., “Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors,” Current Applied Physics,
Volume 11, Issue 5, Pages 1111-1125, 2011.
[30] M. Materano, P. D. Lomenzo, A. Kersch, et al., “Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics,” Inorganic Chemistry Frontiers, vol. 8, pp. 2650-2672, 2021.
[31] P. D. Lomenzo, Q. Takmeel, C. Zhou, et al., “TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films,” Journal of Applied Physics, vol. 117, pp. 134105, 2015.
[32] W. Hamouda, A. Pancotti, C. Lubin, et al., “Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface,” Journal of Applied Physics, vol. 127, pp. 064105, 2020.
[33] Milan Pešić et al., “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Advanced Functional Materials, vol. 26, Pages 4601-4612, 2016.
[34] S. Jindal et al., “Temperature-Dependent Field Cycling Behavior of Ferroelectric Hafnium Zirconium Oxide (HZO) MFM Capacitors,” in IEEE Transactions on electron Devices, vol. 69, no. 7, pp. 3990-3996, 2022.
[35] S. Li, D. Zhou, Z. Shi, et al., “Involvement of Unsaturated Switching in the Endurance Cycling of Si-doped HfO2 Ferroelectric Thin Films,” Advanced Electronic Materials, vol. 6, pp. 2000264, 2020.
[36] Paul Jacob et al., “A Comparative Study of n- and p-Channel FeFETs with
Ferroelectric HZO Gate Dielectric,” Solids, 4(4), 356-367, 2023.
[37] N. Gong et al, “A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation,” in IEEE Electron Device Letters, vol. 39, no. 1, pp. 15-18, 2018.
[38] R. A. Izmailov, J. W. Strand, L. Larcher, et al., “Electron trapping in ferroelectric HfO2,” Physical Review Materials, vol. 5, pp. 034415, 2021.
[39] X. Pan, and T. P. Ma. “Retention mechanism study of the ferroelectric field effect
transistor,” Applied Physics Letters, vol. 99, pp. 013505, 2011.
[40] Yoonho Ahn et al., “Imprint effect on energy storage performance of Aurivillius Bi3TaTiO9 thin films,” Journal of Materials Research and Technology, Volume 20, Pages 4213-4219, 2022.
[41] P. Buragohain, A. Erickson, P. Kariuki, et al., “Fluid Imprint and Inertial Switching in Ferroelectric La:HfO2 Capacitors,” ACS Applied Materials & Interfaces, vol. 11, pp. 35115-35121, 2019.
[42] F. Mo et al., “Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO channel for High-Density Memory Application,” in IEEE Journal of the Electron Devices Society, vol. 8, pp. 717-723, 2020.
[43] H.-J. Kim et al., “Influence of external forces on the mechanical characteristics of the a-IGZO and graphene based flexible display,” Proc. Global Conf. Polym. Compos. Mater. (PCM), Art. no. 012022, 2014.
[44] Min Hyuk Park et al., “Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films,” Nanoscale, 10(2), 2017.
[45] S. Kim et al., “Epitaxial Strain Control of HfxZr1-xO2 with Sub-nm IGZO Seed Layer Achieving EOT=0.44 nm for DRAM Cell Capacitor,” 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, pp. 1-2, 2023.
[46] Fei Mo et al., “Reliability characteristics of metal/ferroelectric-HfO2/IGZO/metal capacitor for non-volatile memory application,” Appl. Phys. Express 13 074005, 2020.
[47] Baek Su Kim et al., “A Comparative Study on the Ferroelectric Performances in Atomic Layer Deposited Hf0.5Zr0.5O2 Thin Films Using Tetrakis(ethylmethylamino) and Tetrakis(dimethylamino) Precursors,” Nanoscale Res Lett. 15: 72, 2020.
[48] Markku Leskelä et al., “Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges,” Angew Chem Int Ed Engl., 24;42(45):5548-54, 2003.
[49] Biyao Zhao et al., “Improved Ferroelectric Properties in Hf0.5Zr0.5O2 Thin Films by Microwave Annealing,” Nanomaterials, 12(17), 3001, 2022.
[50] Wanwang Yang et al., “Ferroelectricity of hafnium oxide-based materials: Current status and future prospects from physical mechanisms to device applications,” J. Semicond. 44 053101, 2023.
[51] J. Hur et al., “Interplay of Switching Characteristics, Cycling Endurance and Multilevel Retention of Ferroelectric Capacitor,” 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 39.5.1-39.5.4, 2020.
[52] J. Hur et al., “Characterizing Ferroelectric Properties of Hf0.5Zr0.5O2 From Deep-Cryogenic Temperature (4 K) to 400 K,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 7, no. 2, pp. 168-174, 2021.
[53] H. -K. Peng et al., “Improved Reliability for Back-End-of-Line Compatible Ferroelectric Capacitor With 3 Bits/Cell Storage Capability by Interface Engineering and Post Deposition Annealing,” in IEEE Electron Device Letters, vol. 43, no. 12, pp. 2180-2183, 2022.
[54] Park, Min Hyuk et al., “Review and perspective on ferroelectric HfO2-based thin films for memory applications,” MRS Communications 8: 795-808, 2018.
[55] Yoshiki Sawabe et al., “On the thickness dependence of the polarization switching kinetics in HfO2-based ferroelectric,” Appl. Phys. Lett. 121, 082903, 2022.
[56] Sheng-Min Wang et al., “Tunable defect engineering of Mo/TiON electrode in angstrom-laminated HfO2/ZrO2 ferroelectric capacitors towards long endurance and high temperature retention,” Nanotechnology 35 205704, 2024.
[57] K. Chen et al., “Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment,” Symposium on VLSI Circuits, pp. T84-T85, 2017.
[58] Jihoon Kim et al., “A study on H2 plasma treatment effect on a-IGZO thin film transistor,” Journal of Materials Research, 27, 2318–2325, 2012.
[59] K. Ni et al., “A Novel Ferroelectric Superlattice Based Multi-Level Cell Non-Volatile Memory,” 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp. 28.8.1-28.8.4, 2019.
[60] Y. Goh et al., “Crystalline Phase-Controlled High-Quality Hafnia Ferroelectric With RuO₂ Electrode,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3431-3434, 2020.
[61] Youngin Goh et al., “Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode,” Nanoscale, 12, 9024-9031, 2020.
[62] Kyeong-Keun Choi et al., “Effects of H2 plasma and annealing on atomic-layer-deposited Al2O3 films and Al/Al2O3/Si structures,” Appl. Phys. Express 8 045801, 2015.
[63] Jailes J. Beltrán et al., “Relationship between ferromagnetism and formation of complex carbon bonds in carbon doped ZnO powders,” Phys. Chem. Chem. Phys., 21, 8808-8819, 2019.
[64] T. P. Ma et al., “Why is nonvolatile ferroelectric memory field-effect transistor still elusive?, ” IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.
[65] Kasidit Toprasertpong et al., “Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory,” ACS Appl Mater Interfaces., Nov 16;14(45):51137-51148, 2022.
[66] J. Y. Jo et al., “Domain Switching Kinetics in Disordered Ferroelectric Thin Films,” Phys. Rev. Lett. 99, 267602, 2007.
[67] Seung Dam Hyun et al., “Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf0.5Zr0.5O2 Thin Films,” ACS Appl. Mater. Interfaces, 10, 41, 35374–35384, 2018.
[68] C. Alessandri et al., “Switching Dynamics of Ferroelectric Zr-Doped HfO2,” IEEE Electron Device Letters, vol. 39, no. 11, pp. 1780-1783, 2018.
[69] Dong Hyun Lee et al., “Effect of residual impurities on polarization switching kinetics in atomic-layer-deposited ferroelectric Hf0.5Zr0.5O2 thin films,” Acta Materialia, Volume 222, 117405, ISSN 1359-6454, 2022.
指導教授 唐英瓚(Ying-Tsan Tang) 審核日期 2024-4-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明