博碩士論文 109521159 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.222.107.27
姓名 江易宸(YI-CHEN JIANG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用雷射誘導石墨烯電極於細胞基底行為電阻抗感測
(Laser-Induced Graphene (LIG) Electrode for Electric Cell–Substrate Impedance Sensing)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用電化學交流阻抗法即時監測動物細胞貼附於電極上的行為,這項技術被稱為Electric Cell–substrate Impedance Sensing (ECIS)。檢測的項目為不同生長情況的小鼠纖維母細胞(L929)於電極上因懸浮或貼附所引起的阻抗值變化。本研究所使用的感測元件是利用雷射刻劃在耐高溫、耐化學藥品的聚醯亞胺(Polyimide)基板表面所製作出的石墨烯電極,稱為雷射誘導石墨烯(Laser-induced graphene, LIG)電極。電極型態上我們將選擇指叉電極;經過許多不同的電極尺寸、電極數量的設計與量測結果,最終將選擇考慮細胞大小以及LIG所能達到的尺寸之條件下期望得到穩定且靈敏度高的電極之尺寸。將小鼠纖維母細胞(L929)放置在指叉電極表面上的培養液中生長,使用低真空掃描式電子顯微鏡(LV-SEM)讓我們能夠清楚觀察在電極上面的增殖、生長、貼附的情形。監測上,利用電化學阻抗分析儀量L929細胞在含有不同濃度的毒化物或是藥品之培養液中生長時細胞和基底電極間的阻抗頻譜隨時間之變化。實驗結果顯示毒化物對細胞生長、貼附行為的影響可以利用測量LIG電極的阻抗頻譜而即時監控。本方法的優點包括可靠性高、分析速度快、精確性高,而且使用的樣品數和試劑少,就可以獲得相當好的樣品資訊。
摘要(英) This study used electrochemical AC (alternating-current) impedance method to monitor the behavior of animal cells attached to electrodes in real time, i.e., to conduct Electric Cell-substrate Impedance Sensing (ECIS). The target of detection was the impedance changes caused by suspension or attachment of mouse fibroblasts (L929) in different growth conditions on the interdigital electrodes. Laser-induced graphene (LIG) electrodes were used for measuring the cell-substrate impedance as well as for the substrate on which cells attached and grew. They were fabricated by laser scribing on the surface of heat-resistant, chemical-resistant polyimide film. Mouse fibroblasts (L929) were grown in culture medium on the surface of the interdigitated electrodes. Low-vaccume scanning electron microscopy (LV-SEM) allowed us to visually verify the cell proliferation, growth, and attachment on the electrodes. Then, the impedance spectrum between the cells and the substrate electrode was measured with time when L929 cells were grown in culture media containing different concentrations of poisons or drugs by electrochemical impedance analyzer. The experimental results showed that the feasibility of real-time monitoring the effects of poisons on cell growth and attachment behavior by measuring the cell-substrate impedance spectrum with LIG electrodes. The advantages of this method include high reliability, high analysis speed, high accuracy, and relatively good sample information with a small number of samples and reagents used.
關鍵字(中) ★ 細胞基底行為電阻抗感測
★ 雷射誘導石墨烯電極
★ 指叉電極
★ 阻抗式生物感測器
★ 細胞貼附
★ 毒化物檢測
關鍵字(英) ★ ECIS
★ laser-induced graphene electrode
★ interdigital electrode
★ impeditive biosensor
★ cell attachment
★ toxic detection
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-1-1 生物感測器定義 1
1-1-2 生物感測器組成與結構 1
1-1-3 交流阻抗法電化學生物感測器測量原理 2
1-1-4 指叉型電極原理介紹 5
1-2 細胞生理特性介紹 8
1-2-1 細胞結構 8
1-2-2 細胞的主要成分 12
1-2-3 分子穿越細胞膜之移動方式 14
1-2-4 細胞生長週期 15
1-2-5 細胞的貼附 16
1-2-6 細胞凋亡與衰老 17
第二章 研究動機與目標 19
2-1 研究動機 19
2-2 研究目標 19
第三章 實驗方法 20
3-1 阻抗感測元件設計 20
3-2 雷射雕刻機基本設備介紹以及軟體的使用 22
3-2-1 雷射雕刻機之感測晶片材料選用 22
3-2-2 儀器設備 23
3-2-3 製作電極 UCP 軟體之基本操作介面以及相關參數設定 24
3-3 細胞培養 29
3-3-1 細胞培養藥劑、材料 29
3-3-2 細胞培養使用之實驗設備 32
3-3-3 細胞培養方法及步驟 37
3-3-4 細胞用LV-SEM顯微鏡觀察 40
3-4 小鼠纖維母細胞(L929)阻抗量測 42
3-4-1 小鼠纖維母細胞(L929)阻抗量測方法實驗 42
3-4-2 IM6-ex儀器量測阻抗實驗 48
3-4-3 IM6-ex儀器初始設定 50
3-4-4 等效電路設計 52
第四章 實驗結果與討論 54
4-1 自製指叉電極之拉曼光譜 54
4-2電極阻抗、電容值量測結果 56
4-2-1 電極電容值特性 56
4-2-2 溶液下等效電路探討 60
4-2-3 不同溶液阻抗電容值量測以及擬合結果 61
4-3 小鼠纖維母細胞(L929)阻抗量測實驗 65
4-3-1 小鼠纖維母細胞(L929)生長情況 65
4-3-2 小鼠纖維母細胞(L929)貼附電極之等效電路探討 69
4-3-3 小鼠纖維母細胞(L929)貼附電極之阻抗值量測 70
4-3-4 小鼠纖維母細胞(L929)添加Trypsin–EDTA之阻抗值量測 76
4-3-5 小鼠纖維母細胞(L929)添加 DMSO 之阻抗值量測 85
4-4 小鼠纖維母細胞(L929)貼附電極之 SEM 顯微鏡圖 97
第五章 結論 102
參考文獻 103
參考文獻 [1] Stupin, Daniil D., et al. "Bioimpedance spectroscopy: basics and applications." ACS Biomaterials Science & Engineering 7.6 (2021): 1962-1986.
[2] Martinkova, Pavla, et al. "Main streams in the construction of biosensors and their applications." International Journal of Electrochemical Science, volume 12, issue: 8 (2017).
[3] Vigneshvar, S., et al. "Recent advances in biosensor technology for potential applications–an overview." Frontiers in bioengineering and biotechnology 4 (2016): 11.
[4] Purohit, Buddhadev, et al. "Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis." Sensors International 1 (2020): 100040.
[5] Maduraiveeran, Govindhan, Manickam Sasidharan, and Vellaichamy Ganesan. "Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications." Biosensors and Bioelectronics 103 (2018): 113-129.
[6] Xu, Ying, et al. "Equivalent circuit models for a biomembrane impedance sensor and analysis of electrochemical impedance spectra based on support vector regression." Medical & Biological Engineering & Computing 57.7 (2019): 1515-1524.
[7] Glasstone, Samuel. An introduction to electrochemistry. Read Books Ltd, 2011.
[8] Simon, Patrice, and Yury Gogotsi. "Perspectives for electrochemical capacitors and related devices." Nature materials 19.11 (2020): 1151-1163.
[9] Kotsiri, Zoi, Jasmina Vidic, and Apostolos Vantarakis. "Applications of biosensors for bacteria and virus detection in food and water–A systematic review." journal of environmental sciences 111 (2022): 367-379.
[10] Mazlan, N. S., et al. "Interdigitated electrodes as impedance and capacitance biosensors: A review." AIP Conference proceedings. Vol. 1885. No. 1. AIP Publishing LLC, 2017.
[11] Arya, Sunil K., et al. "Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum." Biosensors and Bioelectronics 102 (2018): 106-112.
[12] Liu, Nishuang, and Yihua Gao. "Recent progress in micro‐supercapacitors with in‐plane interdigital electrode architecture." Small 13.45 (2017): 1701989.
[13] Ribeiro, L. and F.J.P.o.t.S.D. Fruett, Venice, Italy, Analysis of the Planar Electrode Morphology for Capacitive Chemical Sensors. 2015: p.179-182.
[14] Bourne, Geoffrey, ed. Cytology and cell physiology. Elsevier, 2012.
[15] Risco, Cristina, et al. "Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly." Journal of virology 76.4 (2002): 1839-1855.
[16] Darnell Jr, JAMES E. "Ribonucleic acids from animal cells." Bacteriological reviews 32.3 (1968): 262-290.
[17] Ariëns, Everhardus Jacobus, ed. Molecular Pharmacology V3: The Model of Action of Biology Active Compounds. Vol. 3. Elsevier, 2012.
[18] Sablowski, Robert, and Marcelo Carnier Dornelas. "Interplay between cell growth and cell cycle in plants." Journal of experimental botany 65.10 (2014): 2703-2714.
[19] Frantz, Christian, Kathleen M. Stewart, and Valerie M. Weaver. "The extracellular matrix at a glance." Journal of cell science 123.24 (2010): 4195-4200.
[20] Van Cruchten, Steven, and Wim Van Den Broeck. "Morphological and biochemical aspects of apoptosis, oncosis and necrosis." Anatomia, histologia, embryologia 31.4 (2002): 214-223.
[21] Thivina, V., et al. "Design and fabrication of Interdigitated Electrode (IDE) for detection of Ganoderma boninense." 2016 IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2016.
[22] Martinez, Jaime, et al. "Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology." 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017.
[23] Puetz, P., et al. "Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays." Sensors and Actuators B: Chemical 321 (2020): 128443.
[24] Dixit, Nandini, and Swatantra P. Singh. "Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective." ACS omega 7.6 (2022): 5112-5130.
[25] Ye, Ruquan, et al. "Laser‐induced graphene formation on wood." Advanced Materials 29.37 (2017): 1702211.
[26] Sathya, S., et al. "Design of capacitance based on interdigitated electrode for BioMEMS sensor application." Materials Science in Semiconductor Processing 101 (2019): 206-213.
[27] Rajapaksha, R. D. A. A., U. Hashim, and C. A. N. Fernando. "Design, fabrication and characterization of 1.0 μm Gap Al based interdigitated electrode for biosensors." Microsystem Technologies 23.10 (2017): 4501-4507.
[28] Sadeghian, Hesam, Yousef Hojjat, and Masoud Soleimani. "Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators." Journal of Electrostatics 86 (2017): 41-49.
[29] Chyan, Yieu, et al. "Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food." ACS nano 12.3 (2018): 2176-2183.
[30] Yang, T., et al. "Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application." Sensors and Actuators B: Chemical 208 (2015): 327-333.
[31] Ye, Ruquan, Dustin K. James, and James M. Tour. "Laser-induced graphene." Accounts of chemical research 51.7 (2018): 1609-1620.
[32] Taniselass, S., MK Md Arshad, and Subash CB Gopinath. "Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers." Biosensors and Bioelectronics 130 (2019): 276-292.
[33] Xu, Yadong, et al. "Laser-induced graphene for bioelectronics and soft actuators." Nano research 14.9 (2021): 3033-3050.
[34] Kulyk, Bohdan, et al. "Laser-induced graphene from paper for mechanical sensing." ACS Applied Materials & Interfaces 13.8 (2021): 10210-10221.
[35] Yagati, Ajay Kumar, et al. "Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors." Biosensors and Bioelectronics 164 (2020): 112272.
[36] Tehrani, Farshad, and Behzad Bavarian. "Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose." Scientific reports 6.1 (2016): 1-10.
[37] Lin, Jian, et al. "Laser-induced porous graphene films from commercial polymers." Nature communications 5.1 (2014): 1-8.
[38] Liu, Jen-Tsai, et al. "Impedance sensor for rapid enumeration of E. coli in milk samples." Electrochimica Acta 182 (2015): 89-95.
[39] Van Gerwen, Peter, et al. "Nanoscaled interdigitated electrode arrays for biochemical sensors." Sensors and Actuators B: Chemical 49.1-2 (1998): 73-80.
[40] Settu, Kalpana, et al. "Concept for E. coli detection using interdigitated microelectrode impedance sensor." 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013.
[41] Chang, Bin-Wha, et al. "Impedimetric monitoring of cell attachment on interdigitated microelectrodes." Sensors and Actuators B: Chemical 105.2 (2005): 159-163.
[42] Cho, Sungbo, and Hagen Thielecke. "Electrical characterization of human mesenchymal stem cell growth on microelectrode." Microelectronic Engineering 85.5-6 (2008): 1272-1274.
[43] Ramuz, M., et al. "Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor." Journal of Materials Chemistry B 3.29 (2015): 5971-5977.
[44] Su, Min, et al. "Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells." Biosensors and Bioelectronics 63 (2015): 232-239.
[45] Furst, Ariel L., and Matthew B. Francis. "Impedance-based detection of bacteria." Chemical reviews 119.1 (2018): 700-726.
[46] Reiss, Bjoern, and Joachim Wegener. "Impedance analysis of different cell monolayers grown on gold-film electrodes." 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015.
[47] Xiao, Caide, and John HT Luong. "On‐line monitoring of cell growth and cytotoxicity using electric cell‐substrate impedance sensing (ECIS)." Biotechnology progress 19.3 (2003): 1000-1005.
[48] Highberger, John H. "The isoelectric point of collagen." Journal of the American Chemical Society 61.9 (1939): 2302-2303.
[49] Huang, Xiaoqiu, et al. "Impedance based biosensor array for monitoring mammalian cell behavior." SENSORS, 2003 IEEE. Vol. 1. IEEE, 2003.
[50] Chen, Fengying, Tianfu Wu, and Xiangrong Cheng. "Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L 929 cell lines." Gerodontology 31.1 (2014): 4-10.
[51] Shah, Pratikkumar, et al. "Microelectromechanical system-based sensing arrays for comparative in vitro nanotoxicity assessment at single cell and small cell-population using electrochemical impedance spectroscopy." ACS applied materials & interfaces 8.9 (2016): 5804-5812.
[52] Jastrzebska, Elzbieta, et al. "Biological characterization of the modified poly (dimethylsiloxane) surfaces based on cell attachment and toxicity assays." Biomicrofluidics 12.4 (2018): 044105.
[53] Asphahani, Fareid, and Miqin Zhang. "Cellular impedance biosensors for drug screening and toxin detection." Analyst 132.9 (2007): 835-841.
[54] Anh-Nguyen, Tien, et al. "An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis." Sensors and Actuators A: Physical 241 (2016): 231-237.
[55] Riss, Terry L., Richard A. Moravec, and Andrew L. Niles. "Cytotoxicity testing: measuring viable cells, dead cells, and detecting mechanism of cell death." Mammalian cell viability. Humana Press, 2011. 103-114.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2022-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明