博碩士論文 109522124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.221.83.34
姓名 陳思翰(Si-Han Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 深度學習菁英基因演算法之線切割放電加工多目標參數最佳化
(Wire Electrical Discharge Machining Multi-objective Parameter Optimization with Deep Learning Elitist Genetic Algorithm)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出線切割放電加工(wire electrical discharge machining, WEDM)多目標參數最佳化方法(multi-objective parameter optimization, MOPO),可以針對指定的產品品質要求,自動產出最佳加工參數組合建議。其基本概念為在多目標演化演算法框架(multi-objective evolutionary algorithm framework)中,以深度神經網路(deep neural network, DNN)為基礎,透過收集「線切割放電機-A」的大量加工資料建構資料驅動代理模型(data-driven surrogate model),並採用第二代非超越排序基因演算法(nondominated sorting genetic algorithm II, NSGA-II),即菁英基因演算法(elitist genetic algorithm),輸出逼近多目標最佳化之加工參數組合建議,完成建構線切割放電加工多目標參數最佳化方法(WEDM-MOPO)的目標。另外,WEDM-MOPO也透過權重凍結(weight freezing)之遷移學習(transfer learning)概念,使用小量「線切割放電機-B」的加工資料將「線切割放電機-A」的深度神經網路代理模型移轉為「線切割放電機-B」的深度神經網路代理模型,以擴增WEDM-MOPO方法的適用範圍。本論文使用實際WEDM加工資料進行實驗,實驗結果顯示「線切割放電機-A」以及「線切割放電機-B」的深度神經網路代理模型均可準確預測線切割放電機的產品品質,在加工速度(machining speed or feed rate)及表面粗糙度(surface roughness)方面,達到平均絕對誤差百分比(mean absolute percentage error, MAPE)為5%以下的目標。另外,在工件精度(workpiece precision)方面,則達到平均絕對誤差(mean absolute error, MAE)為3 μm以下的目標。藉由深度神經網路代理模型的精準預測,WEDM-MOPO因而可以產出良好的最佳加工參數組合建議。另外,再根據對應的產品品質預測進一步選擇幾組特定的最佳加工參數組合並應用於實際的放電加工。其真實產品品質顯示WEDM-MOPO建議的最佳化加工參數組合確實可以滿足指定的產品品質要求。
摘要(英) In this thesis, a wire electrical discharge machining multi-objective parameter optimization (WEDM-MOPO) method is proposed, which can automatically generate the best machining parameter combination recommendations for specified machining quality requirements. The basic concept is to first train a deep neural network (DNN) as a data-driven surrogate model of the multi-objective evolutionary algorithm framework, by a large amount of processing data collected from a "WEDM-A" machine. Afterwards, the method uses the nondominated sorting genetic algorithm II (NSGA-II), that is the elitist genetic algorithm, to output machining parameter combinations for the specified machining quality. In addition, WEDM-MOPO also uses a small amount of processing data collected from a "WEDM-B" machine to transfer the DNN model for "WEDM-A" to be the DNN model for "WEDM-B" through the transfer learning concept of weight freezing. The surrogate DNN model transferring can expand the scope of WEDM-MOPO applications. Extensive experiments using practical WEDM processing data are conducted. Experimental results show that the DNN surrogate models of "WEDM-A" and "WEDM-B" can accurately predict the machining quality of WEDM. In terms of machining speed and surface roughness, the models have the mean absolute percentage error (MAPE) that are less than 5%. In addition, in terms of workpiece precision , the model have the mean absolute error (MAE) that are less than 3 μm. With the accurate prediction of the DNN surrogate models, WEDM-MOPO can generate good recommendations of optimal machining parameter combinations. Recommended machining parameters are selected according to their associated production quality prediction and applied to practical WEDM machining. It is shown that the machining parameters recommended by WEDM-MOPO indeed meet the specified machining quality requirements.
關鍵字(中) ★ 線切割放電加工
★ 代理模型
★ 非超越排序基因演算法
★ 菁英基因演算法
★ 遷移學習
★ 加工參數最佳化
關鍵字(英) ★ wire electrical discharge machining
★ surrogate model
★ non-dominated sorting genetic algorithm
★ elitist genetic algorithms
★ transfer learning
★ machining parameter optimization
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vi
一、緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 1
1.3 論文架構 2
二、背景知識 2
2.1 線切割放電加工 2
2.1.1 放電加工(EDM) 2
2.1.2 線切割放電加工(WEDM) 3
2.1.3 線切割放電加工產品品質預測 4
2.1.4 自動光學檢測(Automatic Optical Inspection, AOI)[26] 5
2.1.5 分釐卡量測(Micrometer)[27] 5
2.2 深度學習(DL) 6
2.2.1 深度學習介紹 6
2.2.2 深度神經網路(DNN) 7
2.2.3 遷移學習 9
2.3 演化演算法(EA) 10
2.3.1 基因演算法 10
2.3.2 非超越排序基因演算法II (NSGA-II) 12
三、研究方法 14
3.1問題定義 14
3.2方法架構 14
3.3實驗設計 15
3.4實驗設計1 -- 代理模型設計 22
3.5實驗設計2 – 非超越排序基因演算法II實作 24
3.6 實驗設計3 – 遷移學習模型設計 26
四、建模結果與討論 29
4.1代理模型建模結果 29
4.2非超越排序基因演算法II結果 37
4.3 遷移學習模型建模結果 40
五、結論和未來展望 45
參考文獻 [1] Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239-242.
[2]Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE transactions on industrial informatics, 14(11), 4724-4734.
[3]Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications.
[4]Parsana, S., Radadia, N., Sheth, M., Sheth, N., Savsani, V., Prasad, N. E., & Ramprabhu, T. (2018). Machining parameter optimization for EDM machining of Mg-RE-Zn-Zr alloy using multi-objective passing vehicle search algorithm. Archives of civil and mechanical engineering, 18(3), 799-817.
[5]Slătineanu, L., Dodun, O., Coteaţă, M., Nagîţ, G., Băncescu, I. B., & Hriţuc, A. (2020). Wire electrical discharge machining—A review. Machines, 8(4), 69.
[6] Chiu, H. W., & Lee, C. H. (2020). Intelligent machining system based on CNC controller parameter selection and optimization. IEEE Access, 8, 51062-51070.
[7]Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. J Intell Manuf, 25, 849-866.
[8]Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International conference on parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.
[9]Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3(1), 1-40.
[10] Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287-1300.
[11] Ho, K. H., Newman, S. T., Rahimifard, S., & Allen, R. D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12-13), 1247-1259.
[12] EDM/WEDM原理
https://kknews.cc/zh-tw/news/jjjb8rp.html
[13] 放電加工原理:
http://120.114.52.149/~4970H089/wiki/index.php/%E6%94%BE%E9%9B%BB%E5%8A%A0%E5%B7%A5
[14] WEDM:
https://www.researchgate.net/figure/Working-principle-of-WEDM_fig2_260107358
[15] 算術平均粗糙度 Ra
https://www.azom.com/article.aspx?ArticleID=19277
[16] B. Singh, and J. P. Misra, “A critical review of wire electric discharge machining,” Chapter 23 in DAAAM International Scientific Book, pp.249-266, 2016.
[17] Goyal, A., Gautam, N., & Pathak, V. K. (2021). An adaptive neuro-fuzzy and NSGA-II-based hybrid approach for modelling and multi-objective optimization of WEDM quality characteristics during machining titanium alloy. Neural Computing and Applications, 33(23), 16659-16674.
[18] U. Esme, A. Sagbas, F. Kahraman, “Prediction of surface roughness in wire electrical discharge machining using design of experiments and neural networks,” Iranian Journal of Science & Technology, Transaction B, Engineering, 33(B3), pp 231-240, 2009
[19] A. Kumar, V. Kumar, J. Kumar, “Prediction of surface roughness in wire electric discharge machining based on response surface methodology,” International Journal of Engineering and Technology, 2012.
[20] Naresh, C.; Bose, P.; Rao, C. Artificial neural networks and adaptive neuro-fuzzy models for predicting WEDM machining responses of Nitinol alloy: Comparative study.SN Appl. Sci.2020,2, 1–23
[21] Chalisgaonkar, R.; Kumar, J.; Pant, P. Prediction of machining characteristics of finish cut WEDM process for pure titanium using feed forward back propagation neural network.Mater. Today Proc.2020,25, 592–601.
[22].Lalwani, V.; Sharma, P.; Pruncu, C.I.; Unune, D.R. Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy.J. Manuf. Mater. Process.2020,4, 44
[23] Surya, V.R.; Kumar, K.V.; Keshavamurthy, R.; Ugrasen, G.; Ravindra, H. Prediction of machining characteristics using artificial neural network in wire EDM of Al7075 based in-situ composite.Mater. Today Proc.2017,4, 203–212
[24] Gurupavan, H.; Devegowda, T.; Ravindra, H.; Ugrasen, G. Estimation of machining performances in WEDM of aluminium based metal matrix composite material using ANN.Mater. Today Proc.2017,4, 10035–10038
[25] Yusoff, Y.; Zain, A.M.; Sharif, S.; Sallehuddin, R.; Ngadiman, M.S. Potential ANN prediction model for multiperformances WEDM on Inconel 718.Neural Comput. Appl.2018,30, 2113–2127
[26]AOI技術 : https://www.google.com/url?sa=i&url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E8%2587%25AA%25E5%258B%2595%25E5%2585%2589%25E5%25AD%25B8%25E6%25AA%25A2%25E6%259F%25A5&psig=AOvVaw2AoGFim_H8BgI4rAKGX8Ui&ust=1646450909069000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCPiWjZ_Bq_YCFQAAAAAdAAAAABAY
[27] 分釐卡 : https://www.keyence.com.tw/ss/products/measure-sys/measurement-selection/type/micrometer.jsp
[28] 深度學習 : https://chih-sheng-huang821.medium.com/%E4%BB%80%E9%BA%BC%E6%98%AF%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-587e6a0dc72a
[29] 基因演算法 :
https://zh.wikipedia.org/wiki/%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95
[30] Golchha, A., & Qureshi, S. G. (2015). Non-dominated sorting genetic algorithm-II–A succinct survey. International Journal of Computer Science and Information Technologies, 6(1), 252-255.
[31] Ghosh, T., & Martinsen, K. (2020). Generalized approach for multi-response machining process optimization using machine learning and evolutionary algorithms. Engineering Science and Technology, an International Journal, 23(3), 650-663.
[32] Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
[33] Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712-731.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明