博碩士論文 109523014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.117.101.250
姓名 鍾承學(Cheng-Hsueh Chung)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 分散式編碼用於VVC/H.266
(Distributed Video Coding On Versatile Video Coding)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-10以後開放)
摘要(中) 在這日新月異的時代,隨著網路的進步以及科技的發達,人們對於追求更高品質的事物始終不會停滯,對於高解析度的影像也是如此,為了能夠更有效率的壓縮這些巨大的視訊資料量,VVC採用了一些更新穎的技術,如矩形編碼樹單元、碼率失真最佳化等等,但於此同時也造成了編碼計算複雜度的提升,本論文結合近幾年來十分熱門的深度學習與機器學習,即卷積神經網路與隨機森林分類器,將其應用於VVC編碼單元編碼區外的劃分。不同於原始VVC遞迴運算編碼單元碼率失真成本,本論文在編碼一開始時先使用支持向量機及卷積神經網路,將方形編碼單元區塊做出劃分,再利用隨機森林分類器向下細分矩形編碼單元區塊,分類完成的區塊將只會進行一次的編碼,藉此大幅節省編碼所需時間,後續再透過隨機森林決策輔助原始VVC篩選預測模式的方式,將整體計算縮減至不到兩成。後續在解碼端則引入三通道殘差神經網路架構,以不同的資訊去補償我們在編碼端的失真。以此實現分散式視訊編碼的概念,結合快速預測模式與解碼端之後處理補償影像品質。實驗結果與VVC相比,整體平均BDBR下降1.63%的情況下,整體編解碼時間大約可以節省51.48%。
摘要(英) In this ever-changing era, with the advancement of the Internet and the development of technology, people will never stop pursuing higher-quality things, and the same is true for high-resolution images. In order to compress these huge videos more efficiently data volume, VVC adopts some more novel technologies, such as rectangular coding tree unit, rate-distortion optimization, etc., but at the same time, it also causes an increase in the complexity of coding calculations. This paper combines the very popular in recent years Deep learning and machine learning, namely convolutional neural networks and random forest classifiers, are applied to VVC coding unit depth decisions. Different from the original VVC recursive operation coding unit rate distortion cost, this paper first uses support vector machine and convolutional neural network to divide the square coding unit blocks at the beginning of coding, and then uses random forest classifier to Subdividing the rectangular coding unit block, the classified block will only be coded once, thereby greatly saving the time required for coding, and then using random forest decision-making to assist the original VVC to filter the prediction mode, reducing the overall calculation to Less than 20%. Subsequently, a three-channel residual neural network architecture is introduced at the decoding end to compensate our distortion at the encoding end with different information. In this way, the concept of distributed video coding is realized, and the fast prediction mode is combined with post-processing at the decoding end to compensate for image quality. Experimental results Compared with VVC, when the overall average BDBR is reduced by 1.63%, the overall side decoding time can be saved by about 51.48%.
關鍵字(中) ★ 多功能影像編碼
★ 支持向量機
★ 卷積神經網路
★ 編碼單元
★ 分散式視訊編碼
★ 畫面內預測
關鍵字(英) ★ Versatile Video Coding
★ support vector machines
★ convolutional neural networks
★ coding units
★ distributed video coding
★ intra prediction
論文目次 論文摘要 VIII
Abstract IX
致謝 XI
圖目錄 XV
表目錄 XVIII
第一章、緒論 1
1.1研究動機與目的 1
1.2論文架構 1
1.3多功能影像編碼(Versatile Video Coding)簡介 2
1.4 VVC編碼架構介紹 3
1.4.1碼率失真代價函數 5
1.4.2編碼單元(Coding Unit) 6
1.4.3預測單元(Prediction Unit)及幀內預測(Intra Predict)介紹 8
1.4.4轉換單元(Transform Unit) 13
1.4.5量化參數(Quantization Parameter) 13
1.4.6 H.265/HEVC 和 H.266/VVC 差異 15
1.5支持向量機(Support Vector Machine)介紹 16
1.6深度學習介紹 19
1.6.1類神經網路 20
1.6.2深度學習 20
第二章、相關文獻回顧 25
2.1HEVC、VVC編碼端減少CU編碼複雜度相關文獻回顧 25
2.2利用支持向量機減少編碼單元複雜度相關文獻回顧 25
2.2.1 Computational Complexity Reduction for HEVC Intra Prediction with SVM 26
2.3利用CNN減少CU編碼複雜度相關文獻回顧 34
2.3.1 A deep convolutional neural network approach for complexity reduction on intra-mode HEVC 34
2.4VVC利用CNN及RFC減少CU編碼複雜度相關文獻 41
2.5分散式編碼相關文獻 43
第三章、VVC分散式壓縮編碼之探討 45
3.1兩階段編碼單元(CU)快速切割演算法則 45
3.1.1VVC新增劃分模式對於整體效能分析 45
3.1.2第一階段編碼單元劃分演算法則 49
3.1.2-1卷積神經網路架構訓練 52
3.1.2-2 前處理階段 52
3.1.2-3 訓練階段 53
3.1.2-4 效能分析 58
3.1.3第二階段編碼單元劃分演算法則 60
3.2隨機森林決策(RFD)輔助約略模式決策(RMD)演算法 67
3.2.1約略模式決策(RMD)畫面內預測模式 67
3.2.2約略模式決策(RMD)及隨機森林決策(RFD)各項分析 69
3.2.2-1約略模式決策(RMD)及隨機森林決策(RFD)對應全模式搜索準確率 69
3.2.2-2約略模式決策(RMD)及隨機森林決策(RFD)篩選模式之紋理比較 71
3.2.3隨機森林決策輔助約略模式決策以減少候選模式之演算法流程及合併編碼單元兩階段快速演算法則之效能分析 72
第四章、VVC分散式壓縮解碼及編解碼端綜合效能 76
4.1 各類卷積神經網路以後處理方式應用於VVC之解碼端比較 76
4.1.1 與編碼端相同卷積神經網路架構用於解碼端 78
4.1.2 三通道殘差網路架構用於解碼端 82
4.1.3 不同卷積神經網路用於解碼端效能分析 87
4.2 合併編解碼端以實現分散式編碼之各項效能分析 89
4.2.1 合併編解碼端之影像品質分析 89
4.2.2合併編解碼端時間分析 92
第五章、結論與未來展望 97
參考文獻 99
參考文獻 [1] Y. Lecun, et al., “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[2] I. Mrazova, M. Kukacka, “Hybrid convolutional neural networks”, Industrial Informatics INDIN 2008. 6th IEEE International Conference, 2008.
[3] S. Lawrence, et al., “Face recognition: A convolutional neural-network approach”, IEEE Transactions on Neural Networks, vol.8, no. 1, pp. 98-113, 1997.
[4] Tao Zhang,Ming-Ting Sun,Debin Zhao,Wen Gao, “Fast Intra-Mode and CU Size Decision for HEVC”, IEEE Transactions on Circuits and Systems for Video Technology ( Volume: 27 , Issue: 8 , Aug. 2017 ).
[5] Jae Myung Ha,Jong Hyun Bae,Myung Hoon Sunwoo, “Texture-based fast CU size decision algorithm for HEVC intra coding”, 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
[6] Mengmeng Zhang,Yu Liu,Zhi Liu, “A new fast algorithm based on SATD for HEVC intra prediction”, 2016 Visual Communications and Image Processing (VCIP).
[7] Jiawen Gu,Minhao Tang,Jiangtao Wen,“SATD Based Fast Intra Prediction for HEVC”, 2017 Data Compression Conference (DCC).
[8] Jiawen Gu,Minhao Tang,Jiangtao Wen,Hao Zhang, “A novel satd based fast intra prediction for HEVC”, 2017 IEEE International Conference on Image Processing (ICIP).
[9] Dang Le Dinh Trang,Kyung Rae Kim,Ik Joon Chang,Jinsang Kim, “Texture characteristic based fast algorithm for CU size decision in HEVC intra coding”,2017 7th International Conference on Integrated Circuits, Design, and Verification (ICDV).

[10] Yuting Wang,Jian Cao,Jun Wang,Fan Liang, “Gradient-Based Fast Intra Coding Decision Algorithm for HEVC”, 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP).
[11] Jie Jay Wang,Kuo Chun Wu,Yin yi Lin, “RMD-Based Mode Decision for Ordered-Dithering HEVC Intra Prediction”, 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention (ICKII).
[12] Jinzheng Lu,Yixian Li, “Fast Algorithm for CU Partitioning and Mode Selection in HEVC Intra Prediction”, 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).
[13]X. Liu, Y. Li, D. Liu, P. Wang, L. T. Yang, “An Adaptive CU Size Decision Algorithm for HEVC Intra Prediction Based on Complexity Classification Using Machine Learning”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 29, pp.144-155, 27 November 2017.
[14]T. Zhang, M. T. Sun, D. Zhao, W. Gao, “Fast Intra-Mode and CU Size Decision for HEVC”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 27, pp.1714-1726, 20 April 2016.
[15]S. J. Cai, Yin yi Lin, “ Reduction of Computation Complexity for HEVC Intra Prediction with Support Vector Machine”, National Central University, Master Thesis, Jun 2017.

[16] Tianyi Li,Mai Xu,Xin Deng, “ A deep convolutional neural network approach for complexity reduction on intra-mode HEVC”, 2017 IEEE International Conference on Multimedia and Expo (ICME).
[17] Takafumi Katayama,Kazuki Kuroda,Wen Shi,Tian Song,Takashi Shimamoto,“Low-complexity intra coding algorithm based on convolutional neural network for HEVC”, 2018 International Conference on Information and Computer Technologies (ICICT).
[18] Kyungah Kim,Won Woo Ro,“Fast CU Depth Decision for HEVC Using Neural Networks”, IEEE Transactions on Circuits and Systems for Video Technology ( Volume: 29 , Issue: 5 , May 2019 ).
[19] Mai Xu,Tianyi Li,Zulin Wang,Xin Deng,Ren Yang,Zhenyu Guan, “Reducing Complexity of HEVC: A Deep Learning Approach”, IEEE Transactions on Image Processing ( Volume: 27 , Issue: 10 , Oct. 2018 ).
[20] Shiba Kuanar,K.R. Rao,Christopher Conly, “Fast Mode Decision In Hevc Intra Prediction, Using Region Wise CNN Feature Classification”, 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).
[21] Jun Shi,Changsheng Gao,Zhibo Chen, “Asymmetric-Kernel CNN Based Fast CTU Partition for HEVC Intra Coding”, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[22] Yongfei Zhang,Gang Wang,Rui Tian,Mai Xu,C. C. Jay Kuo, “Texture-Classification Accelerated CNN Scheme for Fast Intra CU Partition in HEVC”, 2019 Data Compression Conference (DCC).
[23] Wenpeng Ren,Jia Su,Chang Sun,Zhiping Shi, “An IBP-CNN Based Fast Block Partition For Intra Prediction”, 2019 Picture Coding Symposium (PCS).
[24] D. T. Dang-Nguyen, C. Pasquini, V. Conotter, G. Boato, RAISE – A Raw Images Dataset for Digital Image Forensics, ACM Multimedia Systems, Portland, Oregon, March 18-20, 2015.
[25] G. Schaefer and M. Stich "UCID: an uncompressed color image database", Proc. SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004, (18 December 2003).
[26] E. Agustsson, R. Timofte, “NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study”, pp.1122-1131, Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 24 August 2017.
[27] Jie-Jay Wang, Yin yi Lin ,“Computation Reduction of HEVC Intra Prediction using combined SVM and CNN”, National Central University, Master Thesis, Jan 2020.
[28] Han-Yuan Hsu, Yin yi Lin, “Low Computational Complexity, High Coding Efficiency Intra Prediction for HEVC,” Master Thesis, National Central University, Jun. 2016.

[29] Sheng-Min Fan, Yin yi Lin, “Study of A Deep Learning Architecture For HEVC Decoder”, National Central University, Master Thesis, Jan 2020.
[30] J. Kim, J.K. Lee, K.M. Lee, “Accurate Image Super-Resolution Using Very Deep Convolutional Networks”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1646-1654.
[31] R. Puri and K. Ramchandran, “PRISM: A new robust video coding architecture based on distributed compression principles,” in Proceedings of the Allerton Conference on Communication, Control an d Computing, Allerton, IL, Oct. 2002.
[32] A. Aaron, R. Zhang, and B. Girod, “Wyner-Ziv Coding for Motion Video,” Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, Nov. 2002.
[33] D. Slepian and J.K. Wolf, “Noiseless coding of correlated information sources,” IEEE Transactions on Information Theory, Vol. IT-19, July 1973, pp. 471–480.
[34] Wyner and J. Ziv, “The Rate-Distortion Function for Source Coding with Side Information at the Decoder”. IEEE Transactions on Information Theory, Vol. IT-22, Jan. 1976, pp. 1–10.
[35] Po Hao,Chen, “Fast CU Partition for H.266/VVC Intra Prediction with CNN and Random Forest”..
[36] Po-Hsiang Tsui “Post-Processing for HEVC Intra Prediction with ResNet algorithm”..
指導教授 林銀議(Yin-Yi Lin) 審核日期 2023-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明